62 resultados para RNA isolation
em University of Queensland eSpace - Australia
Resumo:
Following injury, it is inherently difficult to completely restore the biomechanical properties of ligaments. Relatively little is known about the cellular mechanisms controlling ligament healing. Numerous studies have implicated fibroblast growth factors (FGFs) as key molecules during the initiation of the cellular proliferation, differentiation, migration and matrix deposition that characterise wound healing. While current surgical emphasis concentrates on growth factor intervention, the role of their cognate receptors (FGFRs) has largely been overlooked. Following transection of the medial collateral ligament (MCL) in rabbits, we examined FGFR expression over a 14-day healing period. Using semiquantitative RT-PCR, we observed a significant upregulation in FGFR2 expression after 3 days. By 7 days post injury, FGFR2 expression fell to basal levels in line with those of FGFR1 and 3, both of which remained unaffected by surgical transection. These results demonstrate a role for FGFR2 in fibroblast and endothelial cell proliferation in damaged ligament, and suggest a window for FGF therapy.
Resumo:
This report details a reliable and efficient RNA extraction protocol for the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal (Gymnodiniales, Dinophyceae). The method typically gives yields of 500 mu g total RNA from 0.4 g wet weight of algae, and, in comparison to current protocols, it is technically simple and less time consuming. This method isolates high-quality, intact RNA from in vine cultured as well as host-isolated cells, as demonstrated by spectrophotometry, gel electrophoresis, and northern analysis. The total RNA obtained was suitable for reverse transcription and PCR amplification of Symbiodinium cDNAs. We have successfully applied our method to isolate total RNA from a different dinoflagellate, Amphidinium carterae Hulburt (Gymnodiniales, Dinophyceae), found in symbiotic association with marine invertebrates.
Resumo:
Tissues of the Australian native plant species Hakea actities (Proteaceae) contain numerous metabolites and structural compounds that hinder the isolation of nucleic acids. Separate RNA and genomic DNA extraction procedures were developed to isolate high quality nucleic acids from H. actities. Total RNA was extracted from leaves, roots and cluster roots of H. actities grown in low nutrient levels. Cluster root formation in H. actities only occurs when the plants are grown in low nutrient concentrations. However, under these conditions, nucleic acid extraction becomes increasingly difficult. The new procedures are faster than many of the published nucleic acid extraction protocols, and avoid the use of hazardous chemicals. The RNA extraction method was used successfully on another Australian species and a crop species, suggesting that the procedure is useful for molecular studies of a broad range of plants.
Resumo:
Bacteria phenotypically resembling members of the phylogenetically distinct planctomycete group of the domain Bacteria were isolated from postlarvae of the giant tiger prawn, Penaeus monodon. A selective medium designed in the light of planctomycete antibiotic resistance characteristics was used for this isolation. Planctomycetes were isolated from both healthy and monodon baculovirus-infected prawn postlarvae, The predominant colony type recovered from postlarvae regardless of viral infection status was nonpigmented. Other, less commonly observed types were pink or orange pigmented, A planctomycete-specific 16S rRNA-directed probe was designed and used to screen the isolates for their identity as planctomycetes prior to molecular phylogenetic characterization. 16S rRNA genes from nine prawn isolates together with two planctomycete reference strains (Planctomyces brasiliensis and Gemmata obscuriglobus) were sequenced and compared with reference sequences from the planctomycetes and other members of the domain Bacteria, Phylogenetic analyses and sequence signatures of the 16S rRNA genes demonstrated that the prawn isolates were members of the planctomycete group, Five representatives of the predominant nonpigmented colony type were members of the Pirellula group within the planctomycetes, as were three pink-pigmented colony type representatives. Homology values and tree topology indicated that representatives of the nonpigmented and pink-pigmented colony types formed two discrete clusters within the Pirellula group, not identical to any known Pirellula species, A sole representative of the orange colony type was a member of the Planctomyces group, virtually identical in 16S rDNA sequence to P. brasiliensis, and exhibited distinctive morphology.
Resumo:
A semi-nested polymerase chain reaction (PCR) was evaluated for detection of Japanese encephalitis (JE) virus in infected mosquitoes stored under simulated northern Australian summer conditions. The effect of silica gel, thymol, and a combination of the two on RNA stability and virus viability in dead mosquitoes were also examined. While JE virus RNA was relatively stable in mosquitoes held for up to 14 days after death, viable virus was not detected after day 1. Thymol vapor inhibited fungal contamination. Detection of single mosquitoes infected with JE virus in large pools of mosquitoes was also investigated. Single laboratory-infected mosquitoes were detected in pools of less than or equal to200 mosquitoes and in pools diluted to 0.2/100 and 0.1/100 mosquitoes, using the semi-nested PCR. However, the ability to detect live virus decreased as pool size increased. The semi-nested PCR proved more expensive than virus isolation for pools of 100 mosquitoes. However, the semi-nested PCR was faster and more economical using larger pools. Results indicate that surveillance of JE virus in mosquitoes using the semi-nested PCR is an alternative to monitoring seroconversions in sentinel pigs.
Resumo:
Patterns of population subdivision and the relationship between gene flow and geographical distance in the tropical estuarine fish Lares calcarifer (Centropomidae) were investigated using mtDNA control region sequences. Sixty-three putative haplotypes were resolved from a total of 270 individuals from nine localities within three geographical regions spanning the north Australian coastline. Despite a continuous estuarine distribution throughout the sampled range, no haplotypes were shared among regions. However, within regions, common haplotypes were often shared among localities. Both sequence-based (average Phi(ST)=0.328) and haplotype-based (average Phi(ST)=0.182) population subdivision analyses indicated strong geographical structuring. Depending on the method of calculation, geographical distance explained either 79 per cent (sequence-based) or 23 per cent (haplotype-based) of the variation in mitochondrial gene flow. Such relationships suggest that genetic differentiation of L. calcarifer has been generated via isolation-by-distance, possibly in a stepping-stone fashion. This pattern of genetic structure is concordant with expectations based on the life history of L. calcarifer and direct studies of its dispersal patterns. Mitochondrial DNA variation, although generally in agreement with patterns of allozyme variation, detected population subdivision at smaller spatial scales. Our analysis of mtDNA variation in L. calcarifer confirms that population genetic models can detect population structure of not only evolutionary significance but also of demographic significance. Further, it demonstrates the power of inferring such structure from hypervariable markers, which correspond to small effective population sizes.
Resumo:
Genetic markers that distinguish fungal genotypes are important tools for genetic analysis of heterokaryosis and parasexual recombination in fungi. Random amplified polymorphic DNA (RAPD) markers that distinguish two races of biotype B of Colletotrichum gloeosporioides infecting the legume Stylosanthes guianensis were sought. Eighty-five arbitrary oligonucleotide primers were used to generate 895 RAPD bands but only two bands were found to be specifically amplified from DNA of the race 3 isolate. These two RAPD bands were used as DNA probes and hybridised only to DNA of the race 3 isolate. Both RAPD bands hybridised to a dispensable 1.2 Mb chromosome of the race 3 isolate. No other genotype-specific chromosomes or DNA sequences were identified in either the race 2 or race 3 isolates. The RAPD markers hybridised to a 2 Mb chromosome in all races of the genetically distinct biotype A pathogen which infects other species of Stylosanthes as well as S. guianensis. The experiments indicate that RAPD analysis is a potentially useful tool for obtaining genotype-and chromosome-specific DNA probes in closely related isolates of one biotype of this fungal pathogen.
Resumo:
Most populations and some species of ticks of the genera Boophilus (5 spp.) and Rhipicephalus (ca. 75 spp.) cannot be distinguished phenotypically. Moreover, there is doubt about the validity of species in these genera. I studied the entire second internal transcribed spacer (ITS 2) rRNA of 16 populations of rhipicephaline ticks to address these problems: Boophilus,microplus from Australia, Kenya, South Africa and Brazil (4 populations); Boophilus decoloratus from Kenya; Rhipicephalus appendiculatus from Kenya, Zimbabwe and Zambia (7 populations); Rhipicephalus zambesiensis from Zimbabwe (3 populations); and Rhipicephalus evertsi from Kenya. Each of the 16 populations had a unique ITS 2, but most of the nucleotide variation occurred among species and genera. ITS 2 rRNA can be used to distinguish the populations and species of Boophilus and Rhipicephalus studied here. Little support was found for the hypothesis that B. microplus from Australia and South Africa are different species. ITS 2 appears useful for phylogenetic inference in the Rhipicephalinae because in genetic distance, maximum likelihood, and maximum parsimony analyses, most branches leading to species had >95% bootstrap support. Rhipicephalus appendiculatus and R, zambeziensis are closely related, yet their ITS 2 sequences could be distinguished unambiguously. This lends weight to a previous proposal that Rhipicephalus sanguineus and Rhipicephalus turanicus, and Rhipicephalus pumlilio and Rhipicephalus camicasi, respectively, are conspecific, because each of these pairs of species had identical sequences for ca. 250 bp of ITS 2 rRNA.
Resumo:
Octopamine is a biogenic amine neurotransmitter of invertebrates that binds to a G-protein coupled receptor that has seven transmembrane domains. Formamidine pesticides like amitraz are highly specific agonists of the octopamine receptor. Amitraz is used extensively to control the cattle tick, Boophilus microplus, and many other ticks but now there are strains of ticks that are resistant to amitraz. We have isolated a cDNA from the cattle tick, B. miciroplus, that belongs to the biogenic amine family of receptors. The predicted amino acid sequence from this cDNA is most similar to octopamine receptors from insects. The nucleotide sequence of this gene from amitraz-resistant and amitraz-susceptible cattle ticks was identical. Thus, a point mutation/s did not confer resistance to amitraz in the strains we studied. Alternative explanations for resistance to amitraz in B. microplus are discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Microorganisms that hydrolyse the ester linkages between phenolic acids and polysaccharides in plant cell walls are potential sources of enzymes for the degradation of lignocellulosic waste. An anaerobic, mesophilic, spore-forming, xylanolytic bacterium with high hydroxy cinnamic acid esterase activity was isolated from the gut of the grass-eating termite Tumilitermes pastinator. The bacterium was motile and rod-shaped, stained gram-positive, had an eight-layered cell envelope, and.formed endospores. Phylogenetic analysis based on 16S rRNA indicated that the bacterium is closely related to Clostridium xylanolyticum and is grouped with polysaccharolytic strains of clostridia. A wide range of carbohydrates were fermented, and growth was stimulated by either xylan or cellobiose as substrates. The bacterium hydrolysed and then hydrogenated the hydroxy cinnamic acids (ferulic and p-coumaric acids), which are esterified to arabinoxylan in plant cell walls. Three cytoplasmic enzymes with hydroxy cinnamic acid esterase activity were identified using non-denaturing gel electrophoresis. This bacterium possesses an unusual multilayered cell envelope in which both leaflets of the cytoplasmic membrane, the peptidoglycan layer and the S layer are clearly discernible. The fate of all these components was easily followed throughout the endospore formation process. The peptidoglycan component persisted during the entire morphogenesis. It was seen to enter the septum and to pass with the engulfing membranes to surround the prespore. It eventually expanded to form the cortex, verification for the peptidoglycan origin of the cortex. Sporogenic vesicles, which are derived from the cell wall peptidoglycan, were associated with the engulfment process. Spore coat fragments appeared early, in stage II, though spore coat formation was not complete until after cortex formation.
Resumo:
A precise, reproducible deletion made during in vitro reverse transcription of RNA2 from the icosahedral positive-stranded Helicoverpa armigera stunt virus (Tetraviridae) is described. The deletion, located between two hexamer repeats, is a 50-base sequence that includes one copy of the hexamer repeat. Only the Moloney murine leukemia virus reverse transcriptase and its derivative Superscript I, carrying a deletion of the carboxy-terminal RNase H region, showed this response, indicating a template-switching mechanism different from one proposed that involves a RNase H-dependent strand transfer, Superscript II, however, which carries point mutations to reduce RNase H activity, does not cause a deletion. A possible mechanism involves the enzyme pausing at the 3' side of a stem-loop structure and the 3' end of the nascent DNA strand separating from the template and reannealing to the upstream hexamer repeat.
Resumo:
A novel conotoxin belonging to the 'four-loop' structural class has been isolated from the venom of the piscivorous cone snail Conus tulipa. It was identified using a chemical-directed strategy based largely on mass spectrometric techniques. The new toxin, conotoxin TVIIA, consists of 30 amino-acid residues and contains three disulfide bonds. The amino-acid sequence was determined by Edman analysis as SCSGRDSRCOOVCCMGLMCSRGKCVSIYGE where O = 4-transl-hydroxyproline. Two under-hydroxylated analogues, [Pro10]TVIIA and [Pro10,11]TVIIA, were also identified in the venom of C. tulipa. The sequences of TVIIA and [Pro10]TVIIA were further verified by chemical synthesis and coelution studies with native material. Conotoxin TVIIA has a six cysteine/four-loop structural framework common to many peptides from Conus venoms including the omega-, delta- and kappa-conotoxins. However, TVIIA displays little sequence homology with these well-characterized pharmacological classes of peptides, but displays striking sequence homology with conotoxin GS, a peptide from Conus geographus that blocks skeletal muscle sodium channels. These new toxins and GS share several biochemical features and represent a distinct subgroup of the four-loop conotoxins.
Resumo:
Two small RNAs regulate the timing of Caenorhabditis elegans development(1,2). Transition from the first to the second larval stage fates requires the 22-nucleotide lin-4 RNA(1,3,4), and transition from late larval to adult cell fates requires the 21-nucleotide let-7 RNA 2. The lin-4 and let-7 RNA genes are not homologous to each other, but are each complementary to sequences in the 3' untranslated regions of a set of protein-coding target genes that are normally negatively regulated by the RNAs1,2,5,6. Here we have detected let-7 RNAs of similar to 21 nucleotides in samples from a wide range of animal species, including vertebrate, ascidian, hemichordate, mollusc, annelid and arthropod, but not in RNAs from several cnidarian and poriferan species, Saccharomyces cerevisiae, Escherichia coli or Arabidopsis. We did not detect lin-4 RNA in these species. We found that let-7 temporal regulation is also conserved: let-7 RNA expression is first detected at late larval stages in C. elegans and Drosophila, at 48 hours after fertilization in zebrafish, and in adult stages of annelids and molluscs. The let-7 regulatory RNA may control late temporal transitions during development across animal phylogeny.
Resumo:
Bioassay-directed fractionation of the EtOH extract of an Oceanapia sp. collected off the northern Rottnest Shelf, Australia, has yielded three novel dithiocyanates, thiocyanatins A (1), B (2a), and C (2b). The structures were determined by detailed spectroscopic analysis and confirmed by total synthesis. In addition to featuring an unprecedented dithiocyanate functionality, thiocyanatins possess an unusual 1,16-difunctionalized n-hexadecane carbon skeleton and are revealed as a hitherto unknown class of nematocidal agents