59 resultados para RNA GENE

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of electric pulses to deliver therapeutic molecules to tissues and organs in vivo is a rapidly growing field of research. Electrotransfer can be used to deliver a wide range of potentially therapeutic agents, including drugs, proteins, oligonucleotides, RNA and DNA. Optimization of this approach depends upon a number of parameters such as target organ accessibility, cell turnover, microelectrode design, electric pulsing protocols and the physiological response to the therapeutic agent. Many organs have been successfully transfected by electroporation, including skin, liver, skeletal and cardiac muscle, male and female germ cells, artery, gut, kidney, retinal ganglion cells, cornea, spinal cord, joint synovium and brain. Electrotransfer technology is relevant in a variety of research and clinical settings including cancer therapy, modulation of pathogenic immune reactions, delivery of therapeutic proteins and drugs, and the identification of drug targets by the modulation of normal gene expression. This, together with the capacity to deliver very large DNA constructs, greatly expands the research and clinical applications of in vivo DNA electrotransfer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The blood-borne renin-angiotensin system (RAS) is known best for its role in the maintenance of blood pressure and electrolyte and fluid homeostasis. However, numerous tissues show intrinsic angiotensin-generating systems that cater for specific local needs through actions that add to, or differ from, the circulating RAS. The male reproductive system has several sites of intrinsic RAS activity. Recent focus on the epididymis, by our laboratories and by others, has contributed important details about the local RAS in this tissue. The RAS components have been localized morphologically and topographically; they have been shown to be responsive to androgens and to hypoxia; and angiotensin has been shown to influence tubular, and consequently, fluid secretion. Components of the RAS have also been found in the testis, vas deferens, prostate and semen. Angiotensin II receptors, type 1 and, to a lesser extent, type 2 are widespread, and angiotensin IV receptors have been localized in the prostate. The roles of the RAS in local processes at these sites are still uncertain and have yet to be fully elucidated, although there is evidence for involvement in tubular contractility, spermatogenesis, sperm maturation, capacitation, acrosomal exocytosis and fertilization. Notwithstanding this evidence for the involvement of the RAS in various important aspects of male reproduction, there has so far been a lack of clinical evidence, demonstrable by changes in fertility, for a crucial role of the RAS in male reproduction. However, it is clear that there are several potential targets for manipulating the activity of the male reproductive system by interfering with the locally generated angiotensin systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Translational pausing may occur due to a number of mechanisms, including the presence of non-optimal codons, and it is thought to play a role in the folding of specific polypeptide domains during translation and in the facilitation of signal peptide recognition during see-dependent protein targeting. In this whole genome analysis of Escherichia coli we have found that non-optimal codons in the signal peptide-encoding sequences of secretory genes are overrepresented relative to the mature portions of these genes; this is in addition to their overrepresentation in the 5'-regions of genes encoding non-secretory proteins. We also find increased non-optimal codon usage at the 3' ends of most E. coli genes, in both non-secretory and secretory sequences. Whereas presumptive translational pausing at the 5' and 3' ends of E. coli messenger RNAs may clearly have a general role in translation, we suggest that it also has a specific role in sec-dependent protein export, possibly in facilitating signal peptide recognition. This finding may have important implications for our understanding of how the majority of non-cytoplasmic proteins are targeted, a process that is essential to all biological cells. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sequences of small-subunit rRNA genes were determined for Dermocystidium percae and a new Dermocystidium species established as D. fennicum sp. n. from perch in Finland. On the basis of alignment and phylogenetic analysis both species were placed in the Dermocystidium-Rhinosporidium clade within Ichthyosporea, D. fennicum as a specific sister taxon to D. salmonis, and D. percae in a clade different from D. fennicum. The ultrastructures of both species well agree with the characteristics approved within Ichthyosporea: walled spores produce uniflagellate zoospores lacking a collar or cortical alveoli. The two Dermocystidium species resemble Rhinosporidium seeberi (as described by light microscope), a member of the nearest relative genus, but differ in that in R. seeberi plasmodia have thousands of nuclei discernible, endospores are discharged through a pore in the wall of the sporangium, and zoospores have not been revealed. The plasmodial stages of both Dermocystidium species have a most unusual behaviour of nuclei, although we do not actually know how the nuclei transform during the development. Early stages have an ordinary nucleus with double, fenestrated envelope. In middle-aged plasmodia ordinary nuclei seem to be totally absent or are only seldom discernible until prior to sporogony, when rather numerous nuclei again reappear. Meanwhile single-membrane vacuoles with coarsely granular content, or complicated membranous systems were discernible. Ordinary nuclei may be re-formed within these vacuoles or systems. In D. percae small canaliculi and in D. fennicum minute vesicles may aid the nucleus-cytoplasm interchange of matter before formation of double-membrane-enveloped nuclei. Dermocystidium represents a unique case when a stage of the life cycle of an eukaryote lacks a typical nucleus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chlamydia pneumoniae is an obligate intracellular respiratory pathogen that causes 10% of community-acquired pneumonia and has been associated with cardiovascular disease. Both whole-genome sequencing and specific gene typing suggest that there is relatively little genetic variation in human isolates of C. pneumoniae. To date, there has been little genomic analysis of strains from human cardiovascular sites. The genotypes of C. pneumoniae present in human atherosclerotic carotid plaque were analysed and several polymorphisms in the variable domain 4 (VD4) region of the outer-membrane protein-A (ompA) gene and the intergenic region between the ygeD and uridine kinase (ygeD-urk) genes were found. While one genotype was identified that was the same as one reported previously in humans (respiratory and cardiovascular), another genotype was found that was identical to a genotype from non-human sources (frog/koala).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A survey of bivalves from Heron Island on the Great Barrier Reef, Australia, revealed a novel digenean infection in Lioconcha castrensis (Bivalvia: Veneridae). The cercaria has oral and ventral suckers, a dorsoventrally orientated stylet embedded in the oral sucker, penetration glands, and a large tail that is inflated at its base. This morphology is broadly consistent with that of previously described gorgoderid cercariae. Partial large subunit ribosomal RNA gene (D1-D3 domains) was sequenced and aligned with sequences from other gorgoderids and related families. Phylogenetic analysis also suggests that the species belongs to the Gorgoderinae. To our knowledge, this is the first report of a gorgoderid from a marine bivalve.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sixty-nine intestinal spirochetes isolated from pigs and poultry in eastern Australia were selected to evaluate the effectiveness of a species-specific PCR-based restriction fragment length polymorphism (RFLP) analysis of the Brachyspira nox gene. For comparative purposes, all isolates were subjected to species-specific PCRs for the pathogenic species Brachyspira hyodysenteriae and Brachyspira pilosicoli, and selected isolates were examined further by sequence analysis of the nox and 16S ribosomal RNA genes. Modifications to the original nox-RFLP method included direct inoculation of bacterial cells into the amplification mixture and purification of the PCR product, which further optimized the nox-RFLP for use in a veterinary diagnostic laboratory, producing sufficient product for both species identification and future comparisons. Although some novel profiles that prevented definitive identification were observed, the nox-RFLP method successfully classified 45 of 51 (88%) porcine and 15 of 18 (83%) avian isolates into 5 of the 6 recognized species of Brachyspira. This protocol represents a significant improvement over conventional methods currently used in veterinary diagnostic laboratories for rapid specific identification of Brachyspira spp. isolated from both pigs and poultry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sensory transduction in the mammalian cochlea requires the maintenance of specialized fluid compartments with distinct ionic compositions. This is achieved by the concerted action of diverse ion channels and transporters, some of which can interact with the PDZ scaffolds, Na+-H+ exchanger regulatory factors 1 and 2 (NHERF-1, NHERF-2). Here, we report that NHERF-1 and NHERF-2 are widely expressed in the rat cochlea, and that their expression is developmentally regulated. Reverse transcription/polymerase chain reaction (RT-PCR) and Western blotting initially confirmed the RNA and protein expression of NHERFs. We then performed immunohistochemistry on cochlea during various stages of postnatal development. Prior to the onset of hearing (P8), NHERF-1 immunolabeling was prominently polarized to the apical membrane of cells lining the endolymphatic compartment, including the stereocilia and cuticular plates of the inner and outer hair cells, marginal cells of the stria vascularis, Reissner's epithelia, and tectorial membrane. With maturation (P21, P70), NHERF-1 immunolabeling was reduced in the above structures, whereas labeling increased in the apical membrane of the interdental cells of the spiral limbus and the inner and outer sulcus cells, Hensen's cells, the inner and outer pillar cells, Deiters cells, the inner border cells, spiral ligament fibrocytes, and spiral ganglion neurons (particularly type II). NHERF-1 expression in strial basal and intermediate cells was persistent. NHERF-2 immunolabeling was similar to that for NHERF-1 during postnatal development, with the exception of expression in the synaptic regions beneath the outer hair cells. NHERF-1 and NHERF-2 co-localized with glial fibrillary acidic protein and vimentin in glia. The cochlear localization of NHERF scaffolds suggests that they play important roles in the developmental regulation of ion transport, homeostasis, and auditory neurotransmission.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Short proteins play key roles in cell signalling and other processes, but their abundance in the mammalian proteome is unknown. Current catalogues of mammalian proteins exhibit an artefactual discontinuity at a length of 100 aa, so that protein abundance peaks just above this length and falls off sharply below it. To clarify the abundance of short proteins, we identify proteins in the FANTOM collection of mouse cDNAs by analysing synonymous and nonsynonymous substitutions with the computer program CRITICA. This analysis confirms that there is no real discontinuity at length 100. Roughly 10% of mouse proteins are shorter than 100 aa, although the majority of these are variants of proteins longer than 100 aa. We identify many novel short proteins, including a dark matter'' subset containing ones that lack detectable homology to other known proteins. Translation assays confirm that some of these novel proteins can be translated and localised to the secretory pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current knowledge about the variety and complexity of the processes that allow regulated gene expression in living organisms calls for a new understanding of genes. A 'postgenomic' understanding of genes as entities constituted during genome expression is outlined and illustrated with specific examples that formed part of a survey research instrument developed by two of the authors for an ongoing empirical study of conceptual change in contemporary biology. Copyright (C) 2006 S. Karger AG, Basel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A. Khromykh, J. Virol. 76:10766-10775). In this study we aimed to establish whether this requirement for NS3 in RNA packaging is determined by the secondary RNA structure of the NS3 gene or by the essential role of the translated NS3 gene product. Multiple silent mutations of three computer-predicted stable RNA structures in the NS3 coding region of KUN replicon RNA aimed at disrupting RNA secondary structure without affecting amino acid sequence did not affect RNA replication and packaging into virus-like particles in the packaging cell line, thus demonstrating that the predicted conserved RNA structures in the NS3 gene do not play a role in RNA replication and/or packaging. In contrast, double frameshift mutations in the NS3 coding region of full-length KUN RNA, producing scrambled NS3 protein but retaining secondary RNA structure, resulted in the loss of ability of these defective RNAs to be packaged into virus particles in complementation experiments in KUN replicon-expressing cells. Furthermore, the more robust complementation-packaging system based on established stable cell lines producing large amounts of complemented replicating NS3-deficient replicon RNAs and infection with KUN virus to provide structural proteins also failed to detect any secreted virus-like particles containing packaged NS3-deficient replicon RNAs. These results have now firmly established the requirement of KUN NS3 protein translated in cis for genome packaging into virus particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Increased levels of tumor necrosis factor (TNF)-alpha and oxidative stress have been implicated as factors contributing to hepatic injury in fatty liver diseases. As steatosis is associated with an accelerated progression of fibrosis in chronic hepatitis C (HCV), we hypothesized that the messenger (m)RNA expression of genes involved with the production of reactive oxygen species, inflammation and cellular injury would be increased in liver tissue from subjects with steatosis and chronic HCV. Methods: Real-time polymerase chain reaction was performed to determine relative mRNA expression levels of collagen I, TNF-alpha, cytochrome P450 2E1 (CYP 2E1), transforming growth factor-beta1 and CD14 in liver biopsies from 38 patients with chronic HCV. The mRNA expression levels were compared between subjects with and without steatosis, fibrosis, and inflammation. Results: Multivariate analysis demonstrated that collagen I mRNA expression was increased by 199% in steatosis (P = 0.02), 85% in moderate to severe fibrosis (P = 0.02) and 157% in inflammation (P = 0.03). Livers of patients with steatosis also had an increase in TNF-alpha mRNA expression by 50% (P = 0.03) and CYP 2E1 expression by 37% (P = 0.04) compared with non-steatotic livers. Tumor necrosis factor-alpha protein was localized to Kupffer cells, bile ducts and portal inflammatory cells by immunohistochemistry. Conclusion: Increased expression of TNF-alpha may be involved in the pathogenesis of liver injury and progression of fibrosis in individuals who have steatosis in association with chronic HCV. (C) 2003 Blackwell Publishing Asia Pty Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfate plays an essential role during growth, development, bone/cartilage formation, and cellular metabolism. In this study, we have isolated the human sulfate anion transporter cDNA (hsat-1; SCL26A1) and gene (SAT1), determined its protein function in Xenopus oocytes and characterized SAT1 promoter activity in mammalian renal cell lines. hsat-1 encodes a protein of 75 kDa, with 12 putative transmembrane domains, that induces sulfate, chloride, and oxalate transport in Xenopus oocytes. hsat-1 mRNA is expressed most abundantly in the kidney and liver, with lower levels in the pancreas, testis, brain, small intestine, colon, and lung. The SAT1 gene is comprised of four exons stretching 6 kb in length, with an alternative splice site formed from an optional exon. SAT1 5' flanking region led to promoter activity in renal OK and LLC-PK1 cells. Using SAT1 5' flanking region truncations, the first 135 bp was shown to be sufficient for basal promoter activity. Mutation of the activator protein-1 (AP-1) site at position 252 in the SAT1 promoter led to loss of transcriptional activity, suggesting its requirement for SAT1 basal expression. This study represents the first functional characterization of the human SAT1 gene and protein encoded by the anion transporter hsat-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfate (SO42-) is required for bone/cartilage formation and cellular metabolism. sat-1 is a SO42- anion transporter expressed on basolateral membranes of renal proximal tubules, and is suggested to play an important role in maintaining SO42- homeostasis. As a first step towards studying its tissue-specific expression, hormonal regulation, and in preparation for the generation of knockout mice, we have cloned and characterized the mouse sat-1 cDNA (msat-1), gene (sat1; Slc26a1) and promoter region. msat-1 encodes a 704 amino acid protein (75.4 kDa) with 12 putative transmembrane domains that induce SO42- (also oxalate and chloride) transport in Xenopus oocytes. msat-1 mRNA was expressed in kidney, liver, cecum, calvaria, brain, heart, and skeletal muscle. Two distinct transcripts were expressed in kidney and liver due to alternative utilization of the first intron, corresponding to an internal portion of the 5'-untranslated region. The Sa1 gene (similar to6 kb) consists of 4 exons. Its promoter is similar to52% G+C rich and contains a number of well-characterized cis-acting elements, including sequences resembling hormone responsive elements T3REs and VDREs. We demonstrate that Sat1 promoter driven basal transcription in OK cells was stimulated by tri-iodothyronine. Site-directed mutagenesis identified an imperfect T3RE at -454-bp in the Sat1 promoter to be responsible for this activity. This study represents the first characterization of the structure and regulation of the Sat1 gene encoding a SO42-/chloride/oxalate anion transporter.