42 resultados para RESINOUS SOLVENT
em University of Queensland eSpace - Australia
Resumo:
Data pertaining to the reputations, self-concepts and coping strategies of thirty-one secondary school Volatile Solvent Users (VSUs), forty-four ex-VSUs, and forty-eight non-VSUs in the Perth Metropolitan area of Western Australia were obtained using the High School Student Activity Questionnaire. Findings revealed that significant differences between current VSUs, ex-VSUs, and non-VSUs were more attributable to factors of reputation enhancement than to factors of either self-concept or coping strategies. Current VSUs identified themselves as both having and wanting to have a more non-confronting reputation, and as admiring drug-related activities significantly more than both ex-VSUs and non-VSUs. Two coping variables were also found to be significant indicating that females use more nonproductive coping strategies and external coping strategies than males. No interaction effects were identified. The implications for drug education and further research are discussed.
Resumo:
Semistructured interviews were conducted with 40 adolescents who reported inhaling volatile solvents. Their average age was 14.2 years, and they used a range of substances. All were aware of the short-term health risks involved in volatile solvent use, and most reported experiencing ill effects, such as headaches and vomiting. Users were found to be organized into groups and peer networks, which often were involved in theft, prostitution, and other risk-taking behaviors. More chronic users had higher status within the group. Suggestions pertaining to intervention were obtained, and these are discussed in light of the findings.
Resumo:
Purpose. In the present study we examined the relationship between solvent uptake into a model membrane (silicone) with the physical properties of the solvents (e.g., solubility parameter, melting point, molecular weight) and its potential predictability. We then assessed the subsequent topical penetration and retention kinetics of hydrocortisone from various solvents to define whether modifications to either solute diffusivity or partitioning were dominant in increasing permeability through solvent-modified membranes. Methods. Membrane sorption of solvents was determined from weight differences following immersion in individual solvents, corrected for differences in density. Permeability and retention kinetics of H-3-hydrocortisone, applied as saturated solutions in the various solvents, were determined over 48 h in horizontal Franz-type glass diffusion cells. Results. Solvent sorption into the membrane could be related to differences in solubility parameters, MW and hydrogen bonding (r(2) = 0.76). The actual and predicted volume of solvent sorbed into the membrane was also found to be linearly related to Log hydrocortisone flux, with changes in both diffusivity and partitioning of hydrocortisone observed for the different solvent vehicles. Conclusions. A simple structure-based predictive model can be applied to the sorption of solvents into silicone membranes. Changes in solute diffusivity and partitioning appeared to contribute to the increased hydrocortisone flux observed with the various solvent vehicles. The application of this predictive model to the more complex skin membrane remains to be determined.
Resumo:
The diffusion model for percutaneous absorption is developed for the specific case of delivery to the skin being limited by the application of a finite amount of solute. Two cases are considered; in the first, there is an application of a finite donor (vehicle) volume, and in the second, there are solvent-deposited solids and a thin vehicle with a high partition coefficient. In both cases, the potential effect of an interfacial resistance at the stratum corneum surface is also considered. As in the previous paper, which was concerned with the application of a constant donor concentration, clearance limitations due to the viable eqidermis, the in vitro sampling rate, or perfusion rate in vivo are included. Numerical inversion of the Laplace domain solutions was used for simulations of solute flux and cumulative amount absorbed and to model specific examples of percutaneous absorption of solvent-deposited solids. It was concluded that numerical inversions of the Laplace domain solutions for a diffusion model of the percutaneous absorption, using standard scientific software (such as SCIENTIST, MicroMath Scientific software) on modern personal computers, is a practical alternative to computation of infinite series solutions. Limits of the Laplace domain solutions were used to define the moments of the flux-time profiles for finite donor volumes and the slope of the terminal log flux-time profile. The mean transit time could be related to the diffusion time through stratum corneum, viable epidermal, and donor diffusion layer resistances and clearance from the receptor phase. Approximate expressions for the time to reach maximum flux (peak time) and maximum flux were also derived. The model was then validated using reported amount-time and flux-time profiles for finite doses applied to the skin. It was concluded that for very small donor phase volume or for very large stratum corneum-vehicle partitioning coefficients (e.g., for solvent deposited solids), the flux and amount of solute absorbed are affected by receptor conditions to a lesser extent than is obvious for a constant donor constant donor concentrations. (C) 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:504-520, 2001.
Resumo:
Patellamide D (patH(4)) is a cyclic octapeptide isolated from the ascidian Lissoclinum patella. The peptide possesses a 24-azacrown-8 macrocyclic structure containing two oxazoline and two thiazole rings, each separated by an amino acid. The present spectrophotometric, electron paramagnetic resonance (EPR) and mass spectral studies show that patellamide D reacts with CuCl, and triethylamine in acetonitrile to form mononuclear and binuclear copper(II) complexes containing chloride. Molecular modelling and EPR studies suggest that the chloride anion bridges the copper(II) ions in the binuclear complex [Cu-2(patH(2))(mu-Cl)](+). These results contrast with a previous study employing both base and methanol, the latter substituting for chloride in the copper(II) complexes en route to the stable mu-carbonato binuclear copper(II) complex [Cu-2 (patH(2))(mu-CO3)]. Solvent clearly plays an important role in both stabilising these metal ion complexes and influencing their chemical reactivities. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
We give a theoretical treatment of the interaction of electronic excitations (excitions) in biomolecules and quantum dots with the surrounding polar solvent. Significant quantum decoherence occurs due to the interaction of the electric dipole moment of the solute with the fluctuating electric dipole moments of the individual molecules in the solvent. We introduce spin boson models which could be used to describe the effects. of decoherence on the quantum dynamics of biomolecules which undergo light-induced conformational change and on biomolecules or quantum dots which are coupled by Forster resonant energy transfer.
Resumo:
We show that the quantum decoherence of Forster resonant energy transfer between two optically active molecules can be described by a spin-boson model. This allows us to give quantitative criteria that are necessary for coherent quantum oscillations of excitations between the chromophores. Experimental tests of our results should be possible with flourescent resonant energy transfer (FRET) spectroscopy. Although we focus on the case of protein-pigment complexes our results are also relevant to quantum dots and organic molecules in a dielectric medium. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this study, we propose a novel method to predict the solvent accessible surface areas of transmembrane residues. For both transmembrane alpha-helix and beta-barrel residues, the correlation coefficients between the predicted and observed accessible surface areas are around 0.65. On the basis of predicted accessible surface areas, residues exposed to the lipid environment or buried inside a protein can be identified by using certain cutoff thresholds. We have extensively examined our approach based on different definitions of accessible surface areas and a variety of sets of control parameters. Given that experimentally determining the structures of membrane proteins is very difficult and membrane proteins are actually abundant in nature, our approach is useful for theoretically modeling membrane protein tertiary structures, particularly for modeling the assembly of transmembrane domains. This approach can be used to annotate the membrane proteins in proteomes to provide extra structural and functional information.
Resumo:
The solution structure of A beta(1-40)Met(O), the methionine-oxidized form of amyloid beta-peptide A beta(1-40), has been investigated by CD and NMR spectroscopy. Oxidation of Met35 may have implications in the aetiology of Alzheimer's disease. Circular dichroism experiments showed that whereas A beta(1-40) and A beta(1-40)Met(O) both adopt essentially random coil structures in water (pH 4) at micromolar concentrations, the former aggregates within several days while the latter is stable for at least 7 days under these conditions. This remarkable difference led us to determine the solution structure of A beta(1-40)Met(O) using H-1 NMR spectroscopy. In a water-SDS micelle medium needed to solubilize both peptides at the millimolar concentrations required to measure NMR spectra, chemical shift and NOE data for A beta(1-40)Met(O) strongly suggest the presence of a helical region between residues 16 and 24. This is supported by slow H-D exchange of amide protons in this region and by structure calculations using simulated annealing with the program XPLOR. The remainder of the structure is relatively disordered. Our previously reported NMR data for A beta(1-40) in the same solvent shows that helices are present over residues 15-24 (helix 1) and 28-36 (helix 2), Oxidation of Met35 thus causes a local and selective disruption of helix 2. In addition to this helix-coil rearrangement in aqueous micelles, the CD data show that oxidation inhibits a coil-to-beta-sheet transition in water. These significant structural rearrangements in the C-terminal region of A beta may be important clues to the chemistry and biology of A beta(1-40) and A beta(1-42).
Resumo:
Purpose, An integrated ionic mobility-pore model for epidermal iontophoresis is developed from theoretical considerations using both the free volume and pore restriction forms of the model for a range of solute radii (r(j)) approaching the pore radii (r(p)) as well as approximation of the pore restriction form for r(j)/r(p) < 0.4. In this model, we defined the determinants for iontophoresis as solute size (defined by MV, MW or radius), solute mobility, solute shape, solute charge, the Debye layer thickness, total current applied, solute concentration, fraction ionized, presence of extraneous ions (defined by solvent conductivity), epidermal permselectivity, partitioning rates to account for interaction of unionized and ionized lipophilic solutes with the wall of the pore and electroosmosis. Methods, The ionic mobility-pore model was developed from theoretical considerations to include each of the determinants of iontophoretic transport. The model was then used to reexamine iontophoretic flux conductivity and iontophoretic flux-fraction ionized literature data on the determinants of iontophoretic flux. Results. The ionic mobility-pore model was found to be consistent with existing experimental data and determinants defining iontophoretic transport. However, the predicted effects of solute size on iontophoresis are more consistent with the pore-restriction than free volume form of the model. A reanalysis of iontophoretic flux-conductivity data confirmed the model's prediction that, in the absence of significant electroosmosis, the reciprocal of flux is linearly related to either donor or receptor solution conductivity. Significant interaction with the pore walls, as described by the model, accounted for the reported pH dependence of the iontophoretic transport for a range of ionizable solutes. Conclusions. The ionic mobility-pore iontophoretic model developed enables a range of determinants of iontophoresis to be described in a single unifying equation which recognises a range of determinants of iontophoretic flux.
Resumo:
alpha-Conotoxin MII, a 16-residue polypeptide from the venom of the piscivorous cone snail Conus magus, is a potent and highly specific blocker of mammalian neuronal nicotinic acetylcholine receptors composed of alpha 3 beta 2 subunits. The role of this receptor type in the modulation of neurotransmitter release and its relevance to the problems of addiction and psychosis emphasize the importance of a structural understanding of the mode of interaction of MII with the alpha 3 beta 2 interface. Here we describe the three-dimensional solution structure of MIT determined using 2D H-1 NMR spectroscopy. Structural restraints consisting of 376 interproton distances inferred from NOEs and 12 dihedral restraints derived from spin-spin coupling constants were used as input for simulated annealing calculations and energy minimization in the program X-PLOR. The final set of 20 structures is exceptionally well-defined with mean pairwise rms differences over the whole molecule of 0.07 Angstrom for the backbone atoms and 0.34 Angstrom for all heavy atoms. MII adopts a compact structure incorporating a central segment of alpha-helix and beta-turns at the N- and C-termini. The molecule is stabilized by two disulfide bonds, which provide cross-links between the N-terminus and both the middle and C-terminus of the structure. The susceptibility of the structure to conformational change was examined using several different solvent conditions. While the global fold of MII remains the same, the structure is stabilized in a more hydrophobic environment provided by the addition of acetonitrile or trifluoroethanol to the aqueous solution. The distribution of amino acid side chains in MII creates distinct hydrophobic and polar patches on its surface that may be important for the specific interaction with the alpha 3 beta 2 neuronal nAChR. A comparison of the structure of MII with other neuronal-specific alpha-conotoxins provides insights into their mode of interaction with these receptors.
Resumo:
Purpose. To study epidermal and polyethylene membrane penetration and retention of the sunscreen benzophenone-3 (BP) from a range of single solvent vehicles and evaluate solvent effects on permeability parameters. Methods. The solubility of BP was measured in a number of solvents. Penetration of BP across human epidermis and high density polyethylene (HDPE) membranes was studied from 50% saturated solutions in each solvent. Results. Maximal BP fluxes from the solvents across the two membranes varied widely. Highest fluxes were observed from 90% ethanol (EtOH) for epidermis and from isopropyl myristate (IPM) and C12-15 benzoate alcohols (C12-15 BA) for HDPE membrane. Both the flux and estimated permeability coefficient and skin-vehicle partitioning of BP appeared to be related to the vehicle solubility parameter (delta(v)). The major effects of solvents on BP flux appear to be via changes in BP diffusivity through the membranes. Conclusions. Minimal penetration of sunscreens such as BP is best achieved by choosing vehicles with a delta(v) substantially different to the solubility parameter of the membrane.