140 resultados para RESERVOIR WATER

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[1] Comprehensive measurements are presented of the piezometric head in an unconfined aquifer during steady, simple harmonic oscillations driven by a hydrostatic clear water reservoir through a vertical interface. The results are analyzed and used to test existing hydrostatic and nonhydrostatic, small-amplitude theories along with capillary fringe effects. As expected, the amplitude of the water table wave decays exponentially. However, the decay rates and phase lags indicate the influence of both vertical flow and capillary effects. The capillary effects are reconciled with observations of water table oscillations in a sand column with the same sand. The effects of vertical flows and the corresponding nonhydrostatic pressure are reasonably well described by small-amplitude theory for water table waves in finite depth aquifers. That includes the oscillation amplitudes being greater at the bottom than at the top and the phase lead of the bottom compared with the top. The main problems with respect to interpreting the measurements through existing theory relate to the complicated boundary condition at the interface between the driving head reservoir and the aquifer. That is, the small-amplitude, finite depth expansion solution, which matches a hydrostatic boundary condition between the bottom and the mean driving head level, is unrealistic with respect to the pressure variation above this level. Hence it cannot describe the finer details of the multiple mode behavior close to the driving head boundary. The mean water table height initially increases with distance from the forcing boundary but then decreases again, and its asymptotic value is considerably smaller than that previously predicted for finite depth aquifers without capillary effects. Just as the mean water table over-height is smaller than predicted by capillarity-free shallow aquifer models, so is the amplitude of the second harmonic. In fact, there is no indication of extra second harmonics ( in addition to that contained in the driving head) being generated at the interface or in the interior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Australian freshwaters, Anabaena circinalis, Microcystis spp. and Cylindrospermopsis raciborskii are the dominant toxic cyanobacteria. Many of these Surface waters are used as drinking water resources. Therefore, the National Health and Medical Research Council of Australia set a guideline for MC-LR toxicity equivalents of 1.3 mug/l drinking, water. However, due to lack of adequate data, no guideline values for paralytic shellfish poisons (PSPs) (e.g. saxitoxins) or cylindrospermopsin (CYN) have been set. In this spot check. the concentration of microcystins (MCs), PSPs and CYN were determined by ADDA-ELISA, cPPA, HPLC-DAD and/or HPLC-MS/MS, respectively, in two water treatment plants in Queensland/Australia and compared to phytoplankton data collected by Queensland Health, Brisbane. Depending on the predominant cyanobacterial species in a bloom, concentrations of up to 8.0, 17.0 and 1.3 mug/l were found for MCs, PSPs and CYN, respectively. However, only traces (< 1.0 mug/l) of these toxins were detected in final water (final product of the drinking water treatment plant) and tap water (household sample). Despite the low concentrations of toxins detected in drinking water, a further reduction of cyanobacterial toxins is recommended to guarantee public safety. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence is presented for the existence of a countercurrent flow between water and blood at the respiratory surfaces of the Port Jackson shark gill.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skimming flows on stepped spillways are characterised by a significant rate of turbulent dissipation on the chute. Herein an advanced signal processing of traditional conductivity probe signals is developed to provide further details on the turbulent time and length scales. The technique is applied to a 22° stepped chute operating with flow Reynolds numbers between 3.8 and 7.1 E+5. The new correlation analyses yielded a characterisation of large eddies advecting the bubbles. The turbulent length scales were related to the characteristic depth Y90. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level, and turbulence time and length scales. The self-similarity results were significant because they provided a picture general enough to be used to characterise the air-water flow field in prototype spillways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stress corrosion cracking (SCC) initiation process for 4340 high strength steel in distilled water at room temperature was studied using a new kind of instrument: an environmental scanning electron microscope (ESEM). It was found that the applied stress accelerated oxide film formation which has an important influence on the subsequent SCC initiation. SCC was observed to initiate in the following circumstances: (1) cracking of a thick oxide film leading to SCC initiation along metal grain boundaries, (2) the initiation of pits initiating SCC in the metal and (3) SCC initiating from the edge of the specimen. All these three SCC initiation circumstances are consistent with the following model which couples SCC initiation with cracking of a surface protective oxide. There is a dynamic interaction between oxide formation, the applied stress, oxide cracking, pitting and the initiation of SCC. An aspect of the dynamic interaction is cracks forming in a protective surface oxide because of the applied stress, exposing to the water bare metal at the oxide crack tip, and oxidation of the bare metal causing crack healing. Oxide crack healing would be competing with the initiation of intergranular SCC if an oxide crack meets the metal surface at a grain boundary. If the intergranular SCC penetration is sufficiently fast along the metal grain boundary, then the crack yaws open preventing healing of the oxide crack. If intergranular SCC penetration is not sufficiently fast, then the oxidation process could produce sufficient oxide to fill both the stress corrosion crack and the oxide crack; in this case there would be initiation of SCC but only limited propagation of SCC. Stress-induced cracks in very thin oxide can induce pits which initiate SCC, and under some conditions such stress induced cracks in a thin oxide can directly initiate SCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Osteogenic effects of therapeutic fluoride have been reported; however, the impact of exposure to low level water fluoridation on bone density is not clear. We investigated the effect of long-term exposure to fluoridated water from growth to young adulthood on bone mineral density (BMD). Methods: BMD was measured in 24 healthy women from Regina (fluoride 0.1 mg/L) and 33 from Saskatoon (fluoride 1.0 mg/L), with no differences between groups for height, weight, lifestyle or dietary factors. Results: Saskatoon women had significantly higher mean BMD at total anterior-posterior lumbar spine (APS) and estimated volumetric L3 (VLS), with no difference at total body (TB) or proximal femur (PF). Conclusion: Exposure to water fluoridation during the growing years may have a power impact on axial spine bone density in young women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A copolymer of X-hydroxyethyl methacrylate (HEMA) with 2-ethoxy ethyl methacrylate (EEMA) was synthesized and the molecular mobility, free volume, and density properties examined as a function of composition. These properties were correlated with the equilibrium water uptake in order to determine which of the properties were most influential in causing high water sorption, as these materials are suitable candidates for hydrogel systems. It was found that the polar HEMA repeat unit results in a rigid, glassy sample at room temperature due to the high degree of hydrogen bonding between chains whereas high EEMA content leads to rubbery samples with subambient glass transition temperatures. The free volume properties on the molecular scale measured by positron annihilation Lifetime spectroscopy (PALS) showed that higher HEMA content led to smaller, fewer holes and a lower free volume fraction than EEMA. Therefore the high water uptake of HEEMA-containing copolymers is largely related to the high polarity of the HEMA unit compared to EEMA, despite the low content of free volume into which the water can initially diffuse. Trends in density with copolymer composition, as measured on a macroscopic level, differs to that seen by PALS and indicates that the two techniques are measuring different scales of packing. (C) 1998 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioelectrical impedance analysis (BIA) offers the potential for a simple, portable and relatively inexpensive technique for the in vivo measurement of total body water (TBW). The potential of BIA as a technique of body composition analysis is even greater when one considers that body water can be used as a surrogate measure of lean body mass. However, BIA has not found universal acceptance even with the introduction of multi-frequency BIA (MFBIA) which, potentially, may improve the predictive accuracy of the measurement. There are a number of reasons for this lack of acceptance, although perhaps the major reason is that no single algorithm has been developed which can be applied to all subject groups. This may be due, in part, to the commonly used wrist-to-ankle protocol which is not indicated by the basic theory of bioimpedance, where the body is considered as five interconnecting cylinders. Several workers have suggested the use of segmental BIA measurements to provide a protocol more in keeping with basic theory. However, there are other difficulties associated with the application of BIA, such as effects of hydration and ion status, posture and fluid distribution. A further putative advantage of MFBIA is the independent assessment not only of TBW but also of the extracellular fluid volume (ECW), hence heralding the possibility of,being able to assess the fluid distribution between these compartments. Results of studies in this area have been, to date, mixed. Whereas strong relationships of impedance values at low frequencies with ECW, and at high frequencies with TBW, have been reported, changes in impedance are not always well correlated with changes in the size of the fluid compartments (assessed by alternative and more direct means) in pathological conditions. Furthermore, the theoretical advantages of Cole-Cole modelling over selected frequency prediction have not always been apparent. This review will consider the principles, methodology and applications of BIA. The principles and methodology will,be considered in relation to the basic theory of BIA and difficulties experienced in its application. The relative merits of single and multiple frequency BIA will be addressed, with particular attention to the latter's role in the assessment of compartmental fluid volumes. (C) 1998 Elsevier Science Ltd. All rights reserved.