9 resultados para REPRODUCTIVE ISOLATION

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nature and extent of reproductive isolation was examined between a new self-compatible hybrid species Senecio eboracensis (2n = 40) and its parents, self-incompatible S. squalidus (2n = 20) and self-compatible S. vulgaris (2n = 40). The triploid F-1 of S. eboracensis x S. squalidus exhibited very low seed set ((x) over bar = 0.63%), and F-2 and F-3 progeny were able to recover nominal levels of fertility ((x) over bar = 23.9 and 9.7%), while F-1 and F-2 offspring of S. eboracensis x S. vulgaris showed reduced seed set ((x) over bar = 63.8 and 58.8%). In both cases, evidence from previous work indicates that reduced fertility is associated with meiotic chromosome mispairing, and is a likely consequence of recombining both parental genomes within this new taxon. No hybrid offspring between S. eboracensis and S. squalidus were found in the wild, and only one such hybrid was recorded among 769 progeny produced by S. eboracensis surrounded by S. squalidus on an experimental plot. Natural crossing between S. eboracensis and S. vulgaris was recorded to be very low (between 0 and 1.46%) in the wild, but rose to 18.3% when individuals of S. eboracensis were surrounded by plants of S. vulgaris. It was concluded that strong breeding barriers exist between the new hybrid species and its two parents. Prezygotic isolation between S. eboracensis and S. vulgaris is likely to be largely due to both species reproducing by predominant self-fertilisation. However, differences recorded for germination, seedling survival, time of flowering and characters associated with pollinator attraction, plus significant clumping of juvenile and adult conspecifics in the wild, probably also contribute to reproductive isolation and ecological differentiation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

While the feasibility of bottleneck-induced speciation is in doubt, population bottlenecks may still affect the speciation process by interacting with divergent selection. To explore this possibility, I conducted a laboratory speciation experiment using Drosophila pseudoobscura involving 78 replicate populations assigned in a two-way factorial design to both bottleneck (present vs. absent) and environment (ancestral vs. novel) treatments. Populations independently evolved under these treatments and were then tested for assortative mating and male mating success against their common ancestor. Bottlenecks alone did not generate any premating isolation, despite an experimental design that was conducive to bottleneck-induced speciation. Premating isolation also did not evolve in the novel environment treatment, neither in the presence nor absence of bottlenecks. However, male mating success was significantly reduced in the novel environment treatment, both as a plastic response to this environment and as a result of environment-dependent inbreeding effects in the bottlenecked populations. Reduced mating success of derived males will hamper speciation by enhancing the mating success of immigrant, ancestral males. Novel environments are generally thought to promote ecological speciation by generating divergent natural selection. In the current experiment, however, the novel environment did not cause the evolution of any premating isolation and it reduced the likelihood of speciation through its effects on male mating success.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The genetic divergence and evolution of new species within the geographic range of a single population (sympatric speciation) contrasts with the well-established doctrine that speciation occurs when populations become geographically isolated (allopatric speciation). Although there is considerable theoretical support for sympatric speciation [1, 2], this mode of diversification remains controversial, at least in part because there are few well-supported examples [3]. We use a combination of molecular, ecological, and biogeographical data to build a case for sympatric speciation by host shift in a new species of coral-dwelling fish (genus Gobiodon). We propose that competition for preferred coral habitats drives host shifts in Gobiodon and that the high diversity of corals provides the source of novel, unoccupied habitats. Disruptive selection in conjunction with strong host fidelity could promote rapid reproductive isolation and ultimately lead to species divergence. Our hypothesis is analogous to sympatric speciation by host shift in phytophagous insects [4, 5] except that we propose a primary role for intraspecific competition in the process of speciation. The fundamental similarity between these fishes and insects is a specialized and intimate relationship with their hosts that makes them ideal candidates for speciation by host shift.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent molecular analyses indicate that many reef coral species belong to hybridizing species complexes or "syngameons." Such complexes consist of numerous genetically distinct-species or lineages, which periodically split and/or fuse as they extend through time. During splitting and fusion, morphologic intermediates form and species overlap. Here we focus on processes associated with lineage fusion, specifically introgressive hybridization, and the recognition of such hybridization in the fossil record. Our approach involves comparing patterns of ecologic and morphologic overlap in genetically characterized modern species with fossil representatives of the same or closely related species. We similarly consider the long-term consequences of past hybridization on the structure of modern-day species boundaries. Our study involves the species complex Montastraea annularis s.l. and is based in the Bahamas, where, unlike other Caribbean locations, two of the three members of the complex today are not genetically distinct. We measured and collected colonies along linear transects across Pleistocene reef terraces of last interglacial age (approximately 125 Ka) on the islands of San Salvador, Andros, and Great Inagua. We performed quantitative ecologic and morphologic analyses of the fossil data, and compared patterns of overlap among species with data from modern localities where species are and are not genetically distinct. Ecologic and morphologic analyses reveal "moderate" overlap (>10%, but statistically significant differences) and sometimes "high" overlap (no statistically significant differences) among Pleistocene growth forms (= "species"). Ecologic analyses show that three species (massive, column, organ-pipe) co-occurred. Although organ-pipes had higher abundances in patch reef environments, columnar and massive species exhibited broad, completely overlapping distributions and had abundances that were not related to reef environment. For morphometric analyses, we used multivariate discriminant analysis on landmark data and linear measurements. The results show that columnar species overlap "moderately" with organ-pipe and massive species. Comparisons with genetically characterized colonies from Panama show that the Pleistocene Bahamas species have intermediate morphologies, and that the observed "moderate" overlap differs from the morphologic separation among the three modern species. In contrast, massive and columnar species from the Pleistocene of the Dominican Republic comprise distinct morphologic clusters, similar to the modern species; organ-pipe species exhibit "low" overlap (

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ecological processes are central to the formation of new species when barriers to gene flow (reproductive isolation) evolve between populations as a result of ecologically-based divergent selection. Although laboratory and field studies provide evidence that 'ecological speciation' can occur, our understanding of the details of the process is incomplete. Here we review ecological speciation by considering its constituent components: an ecological source of divergent selection, a form of reproductive isolation, and a genetic mechanism linking the two. Sources of divergent selection include differences in environment or niche, certain forms of sexual selection, and the ecological interaction of populations. We explore the evidence for the contribution of each to ecological speciation. Forms of reproductive isolation are diverse and we discuss the likelihood that each may be involved in ecological speciation. Divergent selection on genes affecting ecological traits can be transmitted directly (via pleiotropy) or indirectly (via linkage disequilibrium) to genes causing reproductive isolation and we explore the consequences of both. Along with these components, we also discuss the geography and the genetic basis of ecological speciation. Throughout, we provide examples from nature, critically evaluate their quality, and highlight areas where more work is required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Allopatric speciation results from geographic isolation between populations. In the absence of gene flow, reproductive isolation arises gradually and incidentally as a result of mutation, genetic drift and the indirect effects of natural selection driving local adaptation(1-3). In contrast, speciation by reinforcement is driven directly by natural selection against maladaptive hybridization(1,4). This gives individuals that choose the traits of their own lineage greater fitness, potentially leading to rapid speciation between the lineages(1,4). Reinforcing natural selection on a population of one of the lineages in a mosaic contact zone could also result in divergence of the population from the allopatric range of its own lineage outside the zone(4-6). Here we test this with molecular data, experimental crosses, field measurements and mate choice experiments in a mosaic contact zone between two lineages of a rainforest frog. We show that reinforcing natural selection has resulted in significant premating isolation of a population in the contact zone not only from the other lineage but also, incidentally, from the closely related main range of its own lineage. Thus we show the potential for reinforcement to drive rapid allopatric speciation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mating preferences are common in natural populations, and their divergence among populations is considered an important source of reproductive isolation during speciation. Although mechanisms for the divergence of mating preferences have received substantial theoretical treatment, complementary experimental tests are lacking. We conducted a laboratory evolution experiment, using the fruit fly Drosophila serrata, to explore the role of divergent selection between environments in the evolution of female mating preferences. Replicate populations of D. serrata were derived from a common ancestor and propagated in one of three resource environments: two novel environments and the ancestral laboratory environment. Adaptation to both novel environments involved changes in cuticular hydrocarbons, traits that predict mating success in these populations. Furthermore, female mating preferences for these cuticular hydrocarbons also diverged among populations. A component of this divergence occurred among treatment environments, accounting for at least 17.4% of the among- population divergence in linear mating preferences and 17.2% of the among-population divergence in nonlinear mating preferences. The divergence of mating preferences in correlation with environment is consistent with the classic by- product model of speciation in which premating isolation evolves as a side effect of divergent selection adapting populations to their different environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanisms of speciation are not well understood, despite decades of study. Recent work has focused on how natural and sexual selection cause sexual isolation. Here, we investigate the roles of divergent natural and sexual selection in the evolution of sexual isolation between sympatric species of threespine sticklebacks. We test the importance of morphological and behavioral traits in conferring sexual isolation and examine to what extent these traits have diverged in parallel between multiple, independently evolved species pairs. We use the patterns of evolution in ecological and mating traits to infer the likely nature of selection on sexual isolation. Strong parallel evolution implicates ecologically based divergent natural and/or sexual selection, whereas arbitrary directionality implicates nonecological sexual selection or drift. In multiple pairs we find that sexual isolation arises in the same way: assortative mating on body size and asymmetric isolation due to male nuptial color. Body size and color have diverged in a strongly parallel manner, similar to ecological traits. The data implicate ecologically based divergent natural and sexual selection as engines of speciation in this group.