24 resultados para REGRESSION MULTINOMIAL ANALYSIS
em University of Queensland eSpace - Australia
Resumo:
Objective: This study aimed to investigate associations between violence and younger women's reproductive events using Survey 1 (1996) data of the Younger cohort of the Australian Longitudinal Study of Women's Health (ALSWH). Methods: Multinomial regression, using composite variables for both violence and reproductive events, adjusting for socioeconomic variables and weighted for rural and remote areas. Results: 23.8% of 14,784 women aged 18 to 23 years reported violence; 12.6% reported non-partner violence in the previous year; and 11.2% reported ever having had a violent relationship with a partner. Of the latter group, 43% (4.8% overall) also reported violence in the past year. Compared with women reporting no violence, women reporting partner but not recent violence (OR 2.55, 95% Cl 2.10-3.09) or partner and recent violence (OR 3.96, 95% Cl 3.18-4.93) were significantly more likely to have had one or more pregnancies. Conversely, having had a pregnancy (2,561) was associated with an 80% increase in prevalence of any violence and a 230% increase in partner violence. Among women who had a pregnancy, having had a miscarriage or termination was associated with violence. Partner and recent violence is strongly associated with having had a miscarriage, whether alone (OR = 2.85, 95% Cl 1.74-4.66), with a termination (OR = 4.60, 2.26-9.35), or with birth, miscarriage and a termination (OR 4.12, 1.89-9.00). Conclusions and implications: Violence among young women of childbearing age is a factor for which doctors should be vigilant, well-trained and supported to identify and manage effectively.
Resumo:
Background: Protein tertiary structure can be partly characterized via each amino acid's contact number measuring how residues are spatially arranged. The contact number of a residue in a folded protein is a measure of its exposure to the local environment, and is defined as the number of C-beta atoms in other residues within a sphere around the C-beta atom of the residue of interest. Contact number is partly conserved between protein folds and thus is useful for protein fold and structure prediction. In turn, each residue's contact number can be partially predicted from primary amino acid sequence, assisting tertiary fold analysis from sequence data. In this study, we provide a more accurate contact number prediction method from protein primary sequence. Results: We predict contact number from protein sequence using a novel support vector regression algorithm. Using protein local sequences with multiple sequence alignments (PSI-BLAST profiles), we demonstrate a correlation coefficient between predicted and observed contact numbers of 0.70, which outperforms previously achieved accuracies. Including additional information about sequence weight and amino acid composition further improves prediction accuracies significantly with the correlation coefficient reaching 0.73. If residues are classified as being either contacted or non-contacted, the prediction accuracies are all greater than 77%, regardless of the choice of classification thresholds. Conclusion: The successful application of support vector regression to the prediction of protein contact number reported here, together with previous applications of this approach to the prediction of protein accessible surface area and B-factor profile, suggests that a support vector regression approach may be very useful for determining the structure-function relation between primary sequence and higher order consecutive protein structural and functional properties.
Resumo:
This article applies methods of latent class analysis (LCA) to data on lifetime illicit drug use in order to determine whether qualitatively distinct classes of illicit drug users can be identified. Self-report data on lifetime illicit drug use (cannabis, stimulants, hallucinogens, sedatives, inhalants, cocaine, opioids and solvents) collected from a sample of 6265 Australian twins (average age 30 years) were analyzed using LCA. Rates of childhood sexual and physical abuse, lifetime alcohol and tobacco dependence, symptoms of illicit drug abuse/dependence and psychiatric comorbidity were compared across classes using multinomial logistic regression. LCA identified a 5-class model: Class 1 (68.5%) had low risks of the use of all drugs except cannabis; Class 2 (17.8%) had moderate risks of the use of all drugs; Class 3 (6.6%) had high rates of cocaine, other stimulant and hallucinogen use but lower risks for the use of sedatives or opioids. Conversely, Class 4 (3.0%) had relatively low risks of cocaine, other stimulant or hallucinogen use but high rates of sedative and opioid use. Finally, Class 5 (4.2%) had uniformly high probabilities for the use of all drugs. Rates of psychiatric comorbidity were highest in the polydrug class although the sedative/opioid class had elevated rates of depression/suicidal behaviors and exposure to childhood abuse. Aggregation of population-level data may obscure important subgroup differences in patterns of illicit drug use and psychiatric comorbidity. Further exploration of a 'self-medicating' subgroup is needed.
Resumo:
Objective: To determine the population-based utilization rate of electroconvulsive therapy (ECT) in Victoria between 1998-1999, to examine the characteristics of the ECT treated group, and to identify patient factors independently associated with differential rates of ECT treatment. Method: Electroconvulsive therapy is reported under statute in Victoria, Australia. Crude, age-adjusted and age-sex specific utilization rates were calculated using this statutory data for the 1998-1999 financial year and estimated mid-year populations from the Australian Bureau of Statistics. Descriptive characteristics of those treated with ECT were derived from the statutory data. Patient factors associated with an increased likelihood of ECT in the public sector were explored with logistic regression analysis, using non-ECT treated mental health patients from the Victorian Psychiatric Case Register as the reference population. Results: The crude treated-person and age-adjusted rates for the State (both public and private sectors) were 39.9 and 44.0 persons per 100 000 resident population per annum, respectively. The crude and age-adjusted administration rates were 330.3 and 362.6 ECT administrations per 100 000 resident population per annum, respectively. Age-sex specific rates varied by age and sex, with rates generally increasing with age and female sex. Overall, 62.8% of the treated group were women, 32.9% aged over 64, and 75.2% had depression. Diagnosis, age and sex each independently predicted ECT in the public sector, with diagnosis the most important factor, followed by age then sex. Conclusions: Despite decades of use, the appropriate rate of ECT utilization is still unclear. Further research should be directed at exploring the factors, including provider variables, determining ECT treatment.
Resumo:
The integration of geo-information from multiple sources and of diverse nature in developing mineral favourability indexes (MFIs) is a well-known problem in mineral exploration and mineral resource assessment. Fuzzy set theory provides a convenient framework to combine and analyse qualitative and quantitative data independently of their source or characteristics. A novel, data-driven formulation for calculating MFIs based on fuzzy analysis is developed in this paper. Different geo-variables are considered fuzzy sets and their appropriate membership functions are defined and modelled. A new weighted average-type aggregation operator is then introduced to generate a new fuzzy set representing mineral favourability. The membership grades of the new fuzzy set are considered as the MFI. The weights for the aggregation operation combine the individual membership functions of the geo-variables, and are derived using information from training areas and L, regression. The technique is demonstrated in a case study of skarn tin deposits and is used to integrate geological, geochemical and magnetic data. The study area covers a total of 22.5 km(2) and is divided into 349 cells, which include nine control cells. Nine geo-variables are considered in this study. Depending on the nature of the various geo-variables, four different types of membership functions are used to model the fuzzy membership of the geo-variables involved. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We investigate whether relative contributions of genetic and shared environmental factors are associated with an increased risk in melanoma. Data from the Queensland Familial Melanoma Project comprising 15,907 subjects arising from 1912 families were analyzed to estimate the additive genetic, common and unique environmental contributions to variation in the age at onset of melanoma. Two complementary approaches for analyzing correlated time-to-onset family data were considered: the generalized estimating equations (GEE) method in which one can estimate relationship-specific dependence simultaneously with regression coefficients that describe the average population response to changing covariates; and a subject-specific Bayesian mixed model in which heterogeneity in regression parameters is explicitly modeled and the different components of variation may be estimated directly. The proportional hazards and Weibull models were utilized, as both produce natural frameworks for estimating relative risks while adjusting for simultaneous effects of other covariates. A simple Markov Chain Monte Carlo method for covariate imputation of missing data was used and the actual implementation of the Bayesian model was based on Gibbs sampling using the free ware package BUGS. In addition, we also used a Bayesian model to investigate the relative contribution of genetic and environmental effects on the expression of naevi and freckles, which are known risk factors for melanoma.
Resumo:
Areas of the landscape that are priorities for conservation should be those that are both vulnerable to threatening processes and that if lost or degraded, will result in conservation targets being compromised. While much attention is directed towards understanding the patterns of biodiversity, much less is given to determining the areas of the landscape most vulnerable to threats. We assessed the relative vulnerability of remaining areas of native forest to conversion to plantations in the ecologically significant temperate rainforest region of south central Chile. The area of the study region is 4.2 million ha and the extent of plantations is approximately 200000 ha. First, the spatial distribution of native forest conversion to plantations was determined. The variables related to the spatial distribution of this threatening process were identified through the development of a classification tree and the generation of a multivariate. spatially explicit, statistical model. The model of native forest conversion explained 43% of the deviance and the discrimination ability of the model was high. Predictions were made of where native forest conversion is likely to occur in the future. Due to patterns of climate, topography, soils and proximity to infrastructure and towns, remaining forest areas differ in their relative risk of being converted to plantations. Another factor that may increase the vulnerability of remaining native forest in a subset of the study region is the proposed construction of a highway. We found that 90% of the area of existing plantations within this region is within 2.5 km of roads. When the predictions of native forest conversion were recalculated accounting for the construction of this highway, it was found that: approximately 27000 ha of native forest had an increased probability of conversion. The areas of native forest identified to be vulnerable to conversion are outside of the existing reserve network. (C) 2004 Elsevier Ltd. All tights reserved.
Resumo:
Inferring the spatial expansion dynamics of invading species from molecular data is notoriously difficult due to the complexity of the processes involved. For these demographic scenarios, genetic data obtained from highly variable markers may be profitably combined with specific sampling schemes and information from other sources using a Bayesian approach. The geographic range of the introduced toad Bufo marinus is still expanding in eastern and northern Australia, in each case from isolates established around 1960. A large amount of demographic and historical information is available on both expansion areas. In each area, samples were collected along a transect representing populations of different ages and genotyped at 10 microsatellite loci. Five demographic models of expansion, differing in the dispersal pattern for migrants and founders and in the number of founders, were considered. Because the demographic history is complex, we used an approximate Bayesian method, based on a rejection-regression algorithm. to formally test the relative likelihoods of the five models of expansion and to infer demographic parameters. A stepwise migration-foundation model with founder events was statistically better supported than other four models in both expansion areas. Posterior distributions supported different dynamics of expansion in the studied areas. Populations in the eastern expansion area have a lower stable effective population size and have been founded by a smaller number of individuals than those in the northern expansion area. Once demographically stabilized, populations exchange a substantial number of effective migrants per generation in both expansion areas, and such exchanges are larger in northern than in eastern Australia. The effective number of migrants appears to be considerably lower than that of founders in both expansion areas. We found our inferences to be relatively robust to various assumptions on marker. demographic, and historical features. The method presented here is the only robust, model-based method available so far, which allows inferring complex population dynamics over a short time scale. It also provides the basis for investigating the interplay between population dynamics, drift, and selection in invasive species.
Resumo:
Individuals from the same population share a number of contextual circumstances that may condition a common level of blood pressure over and above individual characteristics. Understanding this population effect is relevant for both etiologic research and prevention strategies. Using multilevel regression analyses, the authors quantified the extent to which individual differences in systolic blood pressure (SBP) could be attributed to the population level. They also investigated possible cross-level interactions between the population in which a person lived and pharmacological (antihypertensive medication) and nonpharmacological (body mass index) effects on individual SBP. They analyzed data on 23,796 men and 24,986 women aged 35-64 years from 39 worldwide Monitoring of Trends and Determinants in Cardiovascular Disease (MONICA) study populations participating in the final survey of this World Health Organization project (1989-1997). SBP was positively associated with low educational achievement, high body mass index, and use of antihypertensive medication and, for women, was negatively associated with smoking. About 7-8% of all SBP differences between subjects were attributed to the population level. However, this population effect was particularly strong (i.e., 20%) in antihypertensive medication users and overweight women. This empirical evidence of a population effect on individual SBP emphasizes the importance of developing population-wide strategies to reduce individual risk of hypertension.
Resumo:
The paradigm that mangroves are critical for sustaining production in coastal fisheries is widely accepted, but empirical evidence has been tenuous. This study showed that links between mangrove extent and coastal fisheries production could be detected for some species at a broad regional scale (1000s of kilometres) on the east coast of Queensland, Australia. The relationships between catch-per-unit-effort for different commercially caught species in four fisheries (trawl, line, net and pot fisheries) and mangrove characteristics, estimated from Landsat images were examined using multiple regression analyses. The species were categorised into three groups based on information on their life history characteristics, namely mangrove-related species (banana prawns Penaeus merguiensis, mud crabs Scylla serrata and barramundi Lates calcarifer), estuarine species (tiger prawns Penaeus esculentus and Penaeus semisulcatus, blue swimmer crabs Portunus pelagicus and blue threadfin Eleutheronema tetradactylum) and offshore species (coral trout Plectropomus spp.). For the mangrove-related species, mangrove characteristics such as area and perimeter accounted for most of the variation in the model; for the non-mangrove estuarine species, latitude was the dominant parameter but some mangrove characteristics (e.g. mangrove perimeter) also made significant contributions to the models. In contrast, for the offshore species, latitude was the dominant variable, with no contribution from mangrove characteristics. This study also identified that finer scale spatial data for the fisheries, to enable catch information to be attributed to a particular catchment, would help to improve our understanding of relationships between mangroves and fisheries production. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to apply multifailure survival methods to analyze time to multiple occurrences of basal cell carcinoma (BCC). Data from 4.5 years of follow-up in a randomized controlled trial, the Nambour Skin Cancer Prevention Trial (1992-1996), to evaluate skin cancer prevention were used to assess the influence of sunscreen application on the time to first BCC and the time to subsequent BCCs. Three different approaches of time to ordered multiple events were applied and compared: the Andersen-Gill, Wei-Lin-Weissfeld, and Prentice-Williams-Peterson models. Robust variance estimation approaches were used for all multifailure survival models. Sunscreen treatment was not associated with time to first occurrence of a BCC (hazard ratio = 1.04, 95% confidence interval: 0.79, 1.45). Time to subsequent BCC tumors using the Andersen-Gill model resulted in a lower estimated hazard among the daily sunscreen application group, although statistical significance was not reached (hazard ratio = 0.82, 95% confidence interval: 0.59, 1.15). Similarly, both the Wei-Lin-Weissfeld marginal-hazards and the Prentice-Williams-Peterson gap-time models revealed trends toward a lower risk of subsequent BCC tumors among the sunscreen intervention group. These results demonstrate the importance of conducting multiple-event analysis for recurring events, as risk factors for a single event may differ from those where repeated events are considered.