34 resultados para RAY-ABSORPTION SPECTROSCOPY
em University of Queensland eSpace - Australia
Resumo:
The Parkes Half-Jansky Flat-Spectrum Sample contains a large number of sources with unusually red optical-to-near-infrared (NIR) continua. If this is to be interpreted as extinction by dust in the line of sight, then associated material might also give rise to absorption in the soft X-ray regime. This hypothesis is tested using broadband (0.1-2.4 keV) data from the ROSAT All-Sky Survey. Significant (>3 sigma confidence level) correlations between the optical (and NIR)-to-soft X-ray continuum slope and optical extinction are found in the data, consistent with absorption by material with metallicity and a range in the gas-to-dust ratio as observed in the local ISM. Under this simple model, the soft X-rays are absorbed at a level consistent with the range of extinctions (0 < A(V) < 6 mag) implied by the observed optical reddening. Excess X-ray absorption by warm (ionized) gas, (i.e., a warm absorber) is not required by the data.
Resumo:
Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed.
Resumo:
Raman spectroscopy has been used to investigate the structure of the molybdenum cofactor in DMSO reductase from Rhodobacter capsulatus. Three oxidized forms of the enzyme, designated 'redox cycled', 'as prepared', and DMSORmodD, have been studied using 752 nm laser excitation. In addition, two reduced forms of DMSO reductase, prepared either anaerobically using DMS or using dithionite, have been characterized. The 'redox cycled' form has a single band in the Mo=O stretching region at 865 cm(-1) consistent with other studies. This oxo ligand is found to be exchangeable directly with (DMSO)-O-18 or by redox cycling. Furthermore, deuteration experiments demonstrate that the oxo ligand in the oxidized enzyme has some hydroxo character, which is ascribed to a hydrogen bonding interaction with Trp 116. There is also evidence from the labeling studies for a modified dithiolene sulfur atom, which could be present as a sulfoxide. In addition to the 865 cm(-1) band, an extra band at 818 cm(-1) is observed in the Mo=O stretching region of the 'as prepared' enzyme which is not present in the 'redox cycled' enzyme. Based on the spectra of unlabeled and labeled DMS reduced enzyme, the band at 818 cm(-1) is assigned to the S=O stretch of a coordinated DMSO molecule. The DMSORmodD form, identified by its characteristic Raman spectrum, is also present in the 'as prepared' enzyme preparation but not after redox cycling. The complex mixture of forms identified in the 'as prepared' enzyme reveals a substantial degree of active site heterogeneity in DMSO reductase.
Resumo:
Photo-electron spectroscopy as an analytical tool has only received limited interest in the field of mineral science. Photo-electron spectroscopy, together with Auger electron spectroscopy, gives information about the positions of the energy levels in atoms or molecules. Application of this technique on solid materials will result in information of the band structure of these materials. The principle of photo electron spectroscopy is rather simple: photons with certain energy (wavelength) are allowed to collide with an atom, molecule or a solid material. These photons can then interact with electrons present in the atoms and one of these electrons can be excited from its orbital resulting in a situation similar to a free electron plus a positively charged atom or molecule.
Resumo:
Sulfite dehydrogenase from Starkeya novella is an alphabeta heterodimer comprising a 40.6 kDa subunit (containing the Mo cofactor) and a smaller 8.8 kDa heme c subunit. The enzyme catalyses the oxidation of sulfite to sulfate with the natural electron acceptor being cytochrome c(550). Its catalytic mechanism is thought to resemble that found in eukaryotic sulfite oxiclases. Using protein film voltammetry and redox potentiometry, we have identified both Mo- and heme-centered redox responses from the enzyme immobilized on a pyrolytic graphite working electrode: E-m,E-8 (Fe-III/II) +177 mV; E-m,E-8 (Mo-VI/V) +211 mV and E(m,)8 (Mo-V/IV) -118 mV vs NHE; Upon addition of sulfite to the electrochemical cell a steady-state voltammogram is observed and an apparent Michaelis constant (K-m) of 26(l) muM was determined for the enzyme immobilized on the working electrode surface, which is comparable with the value obtained from solution assays.
Resumo:
The behavior of monolayer films of free base 5,10,15,20-tetrapyridylporphinato (TPyP) and 5,10,15,20-tetrapyridylporphinato zinc(II) (ZnTPyP) on pure water, 0.1 M CdCl2, and 0.1 M CuCl2 subphases was investigated by surface pressure-area isotherms, specular X-ray reflectometry, and polarized total reflection X-ray absorption spectroscopy (PTRXAS). Surface pressure-area isotherms showed significant differences in the area per molecule on pure water compared to that on salt subphases, with a marked increase in the area observed on the salt solutions. This behavior was noted for both forms of the porphyrin and both salts investigated. Modeling of specular X-ray reflectometry data indicated that thinner and more electron dense layers on salt subphases best fit the observed profiles. These data suggest that the porphyrin macrocycle is oriented parallel to the interface on salt subphases and takes on a tilted conformation on pure water. In the case of ZnTPyP, PTRXAS was used to determine the orientation of the porphyrin moiety relative to the surface and to probe the coordination of the central Zn ion. In agreement with the pressure-area isotherms and reflectometry, the PTRXAS data indicate a change in orientation on the salt subphases.
Resumo:
In this paper, we report the results of molybdenum K-edge X-ray absorption studies performed on the oxidized and reduced active sites of the sulfite dehydrogenase from Starkeya novella. Our results provide the first direct structural information on the active site of the oxidized form of this enzyme and confirm the conclusions derived from protein crystallography that the molybdenum coordination is analogous to that of the sulfite oxidases. The molybdenum atom of the oxidized enzyme is bound by two Mo=O ligands at 1.73 angstrom and three thiolate Mo-S ligands at 2.42 angstrom, whereas the reduced enzyme has one oxo at 1.74 angstrom, one long oxygen at 2.19 angstrom (characteristic of Mo-OH2), and three Mo-S ligands at 2.40 angstrom.
Resumo:
Electron paramagnetic resonance (EPR) spectra and X-ray absorption (EXAFS and XANES) data have been recorded for the manganese enzyme aminopeptidase P (AMPP, PepP protein) from Escherichia coli. The biological function of the protein, a tetramer of 50-kDa subunits, is the hydrolysis of N-terminal Xaa-Pro peptide bonds. Activity assays confirm that the enzyme is activated by treatment with Mn2+. The EPR spectrum of Mn2+-activated AMPP at liquid-He temperature is characteristic of an exchange-coupled dinuclear Mn(II) site, the Mn-Mn separation calculated from the zero-field splitting D of the quintet state being 3.5 (+/- 0.1) Angstrom. In the X-ray absorption spectrum of Mn2+-activated AMPP at the Mn K edge, the near-edge features are consistent with octahedrally coordinated Mn atoms in oxidation state +2. EXAFS data, limited to k less than or equal to 12 Angstrom(-1) by traces of Fe in the protein, are consistent with a single coordination shell occupied predominantly by O donor atoms at an average Mn-ligand distance of 2.15 Angstrom, but the possibility of a mixture of O and N donor atoms is not excluded. The Mn-Mn interaction at 3.5 Angstrom, is not detected in the EXAFS, probably due to destructive interference from light outer-shell atoms. The biological function, amino acid sequence and metal-ion dependence of E. coli AMPP are closely related to those of human prolidase, an enzyme that specifically cleaves Xaa-Pro dipeptides. Mutations that lead to human prolidase deficiency and clinical symptoms have been identified. Several known inhibitors of prolidase also inhibit AMPP. When these inhibitors are added to Mn2+-activated AMPP, the EPR spectrum and EXAFS remain unchanged. It can be inferred that the inhibitors either do not bind directly to the Mn centres, or substitute for existing Mn ligands without a significant change in donor atoms or coordination geometry. The conclusions from the spectroscopic measurements on AMPP have been verified by, and complement, a recent crystal structure analysis.
Resumo:
The purpose of the present investigation was to gain an understanding of the nature of the carbon contamination on the surface of standard steel transmission electron spectroscopy (TEM) specimens, the effect of exposure of a clean specimen to normal laboratory air, and the efficacy of plasma-cleaning treatments. This knowledge is a necessary prerequisite to the development of appropriate specimen preparation and/or specimen cleaning methods. X-ray photoelectron spectroscopy in combination with argon ion beam profiling was used to characterize the specimen surfaces of X65 steel and 316 stainless steel. The only clean carbon-free surface obtained was that during argon etching of the sample in the surface analysis chamber. Any exposure of a previously cleaned sample to laboratory air resulted in a rapid carbon (hydrocarbon) contamination of the sample surface and the development of surface oxidation, Plasma cleaning with subsequent exposure of the specimen to the laboratory air also resulted in a carbon-contaminated surface. This suggests that procedures of preparation of TEM specimens of steels outside an ultrahigh vacuum chamber are unlikely to result in the lowering of contamination rates on specimens to levels where measurements for carbon in the grain boundaries are possible. What is needed is a cleaning system as an integral part of the specimen insertion system into the field-emission scanning transmission electron microscope. This cleaning could be carried out by argon ion etching. Copyright (C) 2000 John Wiley & Sons, Ltd.