3 resultados para RAT LUNG IRRADIATION

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clark 1 (diphenylarsine chloride) and Clark 2 ( diphenylarsine cyanide) were used as chemical weapon agents (CWA), and the soil contamination by these CWA and their degraded products, diphenyl and phenyl arsenicals, has been one of the most serious environmental issues. In a series of comparisons in toxicity between trivalent and pentavalent arsenicals we investigated differences in the accumulation and toxicity of phenylarsine oxide (PAO(3+)) and phenylarsonic acid (PAA(5+)) in rat heart microvascular endothelial cells. Both the cellular association and toxicity of PAO(3+) were much higher than those of PAA(5+), and LC50 values of PAO(3+) and PAA(5+) were calculated to be 0.295 muM and 1.93 mM, respectively. Buthionine sulfoximine, a glutathione depleter, enhanced the cytotoxicity of both PAO(3+) and PAA(5+). N-Acetyl-L-cysteine (NAC) reduced the cytotoxicity and induction of heme oxygenase-1 (HO-1) mRNA in PAO(3+)-exposed cells, while NAC affected neither the cytotoxicity nor the HO-1 mRNA level in PAA(5+)-exposed cells. The effect of NAC may be due to a strong affinity of PAO(3+) to thiol groups because both NAC and GSH inhibited the cellular accumulation of PAO(3+), but PAA(3+) increased tyrosine phosphorylation levels of cellular proteins. These results indicate that the inhibition of protein phosphatases as well as the high affinity to cellular components may confer PAO(3+) the high toxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neonatal X-irradiation of central nervous system (CNS) tissue markedly reduces the glial population in the irradiated area. Previous in vivo studies have demonstrated regenerative success of adult dorsal root ganglion (DRG) neurons into the neonatally-irradiated spinal cord. The present study was undertaken to determine whether these results could be replicated in an in vitro environment. The lumbosacral spinal cord of anaesthetised Wistar rat pups, aged between 1 and 5 days, was subjected to a single dose (40 Gray) of X-irradiation. A sham-irradiated group acted as controls. Rats were allowed to reach adulthood before being killed. Their lumbosacral spinal cords were dissected out and processed for sectioning in a cryostat. Cryosections (10 mum-thick) of the spinal cord tissue were picked up on sterile glass coverslips and used as substrates for culturing dissociated adult DRG neurons. After an appropriate incubation period, cultures were fixed in 2% paraformaldehyde and immunolabelled to visualise both the spinal cord substrate using anti-glial fibrillary acidic protein (GFAP) and the growing DRG neurons using anti-growth associated protein (GAP-43). Successful growth of DRG neurites was observed on irradiated, but not on non-irradiated, sections of spinal cord. Thus, neonatal X-irradiation of spinal cord tissue appears to alter its environment such that it can later support, rather than inhibit, axonal regeneration. It is suggested that this alteration may be due, at least in part, to depletion in the number of and/or a change in the characteristics of the glial cells. (C) 2000 ISDN. Published by Elsevier Science Ltd. All rights reserved.