4 resultados para RALSTONIA-EUTROPHA

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacterial wilts of banana known as Moko disease, Bugtok disease and blood disease are caused by members of the R. solanacearum species complex. R. solanacearum is a heterogeneous species which has been divided into 4 genetic groups known as phylotypes. Within the R. solanacearum species complex, strains that cause Moko and Bugtok diseases belong to phylotype II. The blood disease bacterium, the cause of blood disease, belongs to phylotype IV. This study employs phylogenetic analysis of partial endoglucanase gene sequences to further assess the evolutionary relationships between strains of R. solanacearum causing Moko disease and Bugtok disease and the relationship of the blood disease bacterium to other R. solanacearum strains within phylotype IV of the R. solanacearum species complex. These analyses showed that R. solanacearum Moko disease-causing strains are polyphyletic, forming four related, but distinct, clusters of strains. One of these clusters is a previously unrecognised group of R. solanacearum Moko disease-causing strains. It was also found that R. solanacearum strains that cause Bugtok disease are indistinguishable from strains causing Moko disease in the Philippines. Phylogenetic analysis of partial endoglucanase gene sequences of the strains of the blood disease confirms a close relationship of these strains to R. solanacearum strains within phylotype IV of the R. solanacearum species complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA of Leifsonia xyli subsp. xyli (Lxx), the causal agent of ratoon stunting disease of sugarcane, was detected in the fibrovascular fluid of sugarcane plants using random amplified polymorphic DNA PCR-based amplification using two 10-mer oligonucleotide primers. The primers OPC-02 and OPC-11 produced Lxx-specific markers of approximately 800 bp and 1000 bp, respectively. A cloned DNA fragment from the 800 bp PCR product (pSKC2-800) hybridised to a single genomic DNA fragment from Lxx when used as a probe in Southern hybridisation. This cloned fragment did not hybridise to L. xyli subsp. cynodontis (Lxc), or L. xyli-like bacteria isolated from grasses in Australia, indicating the usefulness of this DNA fragment as a specific probe for Lxx. A cloned fragment from the 1000 bp PCR product ( pSKC11-1000) hybridised to three genomic fragments in Lxx isolates, one genomic fragment in two of the four isolates of L. xyli-like bacteria, and in two of the four isolates of Lxc isolated from the USA. These results indicate that L. xyli-like bacteria are more likely to be related to Lxc than Lxx. These probes did not hybridise to the DNA from strains of the species of Clavibacter, Rathayibacter, Acidovorax, Ralstonia, Pseudomonas and Xanthomonas tested. Two oligonucleotide primers (21-mer) designed from the pSKC2-800 sequences specifically amplified template DNA from Lxx and detected as few as 5 x 10(4) cells/mL in fibrovascular fluid from sugarcane plants infected with Lxx.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhizosphere enhanced biodegradation of organic pollutants has been reported frequently and a stimulatory role for specific components of rhizodeposits postulated. As rhizodeposit composition is a function of plant species and soil type, we compared the effect of Lolium perenne and Trifolium pratense grown in two different soils (a sandy silt loam: pH 4, 2.8% OC, no previous 2,4-D exposure and a silt loam: pH 6.5, 4.3% OC, previous 2,4-D exposure) on the mineralization of the herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). We investigated the relationship of mineralization kinetics to dehydrogenase activity, most probable number of 2,4-D degraders (MPN2,4-D) and 2,4-D degrader composition (using sequence analysis of the gene encoding alpha-ketoglutarate/2,4-D dioxygenase (tfdA)). There were significant (P < 0.01) plant-soil interaction effects on MPN2,4-D and 2,4-D mineralization kinetics (e.g. T pratense rhizodeposits enhanced the maximum mineralization rate by 30% in the acid sandy silt loam soil, but not in the neutral silt loam soil). Differences in mineralization kinetics could not be ascribed to 2,4-D degrader composition as both soils had tfdA sequences which clustered with tfdAs representative of two distinct classes of 2,4-D degrader: canonical R. eutropha JMP134-like and oligotrophic alpha-proteobacterial-like. Other explanations for the differential rhizodeposit effect between soils and plants (e.g. nutrient competition effects) are discussed. Our findings stress that complexity of soil-plant-microbe interactions in the rhizosphere make the occurrence and extent of rhizosphere-enhanced xenobiotic degradation difficult to predict.