3 resultados para Río Negro (Argentina)
em University of Queensland eSpace - Australia
Resumo:
The late Miocene Farallon Negro volcanics, comprising basaltic to rhyodacitic volcano-sedimentary rocks, host the Bajo de la Alumbrera porphyry copper-gold deposit in northwest Argentina. Early studies of the geology of the district have underpinned the general model for porphyry ore deposits where hydrothermal alteration and mineralization develop in and around porphyritic intrusions emplaced at shallow depths (2.5-3.5 km) into stratovolcanic assemblages. The Farallon Negro succession is dominated by thick sequences of volcano-sedimentary breccias, with lavas forming a minor component volumetrically. These volcaniclastic rocks conformably overlie crystalline basement-derived sedimentary rocks deposited in a developing foreland basin southeast of the Puna-Altiplano plateau. Within the Farallon Negro volcanics, volcanogenic accumulations evolved from early mafic to intermediate and silicic compositions. The younger and more silicic rocks are demonstrably coeval and comagmatic with the earliest group of mineralized porphyritic intrusions at Bajo de la Alumbrera. Our analysis of the volcanic stratigraphy and facies architecture of the Farallon Negro volcanics indicates that volcanic eruptions evolved from effusive to mixed effusive and explosive styles, as magma compositions changed to more intermediate and silicic compositions. Air early phase of mafic to intermediate voleanism was characterized by small synsedimentary intrusions with peperitic contacts, and lesser lava units scattered widely throughout the district, and interbedded with thick and extensive successions of coarse-grained sedimentary breccias. These sedimentary breccias formed from numerous debris- and hyperconcentrated flow events. A later phase of silicic volcanism included both effusive eruptions, forming several areally restricted lavas, and explosive eruptions, producing more widely dispersed (up to 5 kin) tuff units, some tip to 30-m thickness in proximal sections. Four key features of the volcanic stratigraphy suggest that the Farallon Negro volcanics need not simply record the construction of a large steep-sided polygenetic stratovolcano: (1) sheetlike, laterally continuous debris-flow and other coarse-grained sedimentary deposits are dominant, particularly in the lower sections; (2) mafic-intermediate composition lavas are volumetrically minor; (3) peperites are present throughout the sequence; and (4) fine-grained lacustrine sandstone-siltstone sequences occur in areas previously thought to be proximal to the summit region of the stratovolcano. Instead, the nature, distribution, and geometry of volcanic and volcaniclastic facies suggest that volcanism occurred as a relatively low relief, multiple-vent volcanic complex at the eastern edge of a broad, > 200-km-wide late Miocene volcanic belt and oil ail active foreland sedimentary basin to the Puna-Altiplano. Volcanism that occurred synchronously with the earliest stages of porphyry-related mineralization at Bajo de la Alumbrera apparently developed in an alluvial to ring plain setting that was distal to larger volcanic edifices.
Resumo:
Core samples from an upper Palaeozoic, partly glaciogene borehole section (Ordóñez: YPF Cd O es-1) in the southern Chaco-Paraná Basin (Córdoba Province, northeastern Argentina) have produced variable palynological results. Samples from the lower part of the section (i.e., from the diamictite-bearing upper Ordóñez Formation) proved non-palyniferous. Those from the overlying, essentially post-glacial Victoriano Rodríguez Formation yielded spore-pollen assemblages in varying concentrations and in good to excellent states of preservation, thus providing the material basis for the present account. The palynomorph taxa represented in the assemblages comprise 20 species of spores (distributed among 14 genera) and 25 species of pollen grains (14 genera). The majority of the species are described in systematic detail. One trilete spore species -Convolutispora archangelskyi- is newly proposed. Several other, possibly new species (three of trilete spores, one of monosaccate pollen) are represented insufficiently for other than informal naming. The following new combinations, also of trilete spore species, are instituted: Converrucosisporites confluens (Archangelsky & Gamerro, 1979), C. micronodosus (Balme & Hennelly, 1956), and Anapiculatisporites tereteangulatus (Balme & Hennelly, 1956). Sculptural intergradation (granulate through verrucate) among three species -Granulatisporites austroamericanus Archangelsky & Gamerro, 1979, C. confluens, and C. micronodosus- prompts their informal grouping, proposed herein, as the Converrucosisporites confluens Morphon, which is also recognizable elsewhere in the Gondwanan Permian. The possibility, if not the likelihood, that G. austroamericanus is conspecific with Microbaculispora tentula Tiwari, 1965 is canvassed. The palynologically productive borehole section of the Victoriano Rodríguez Formation studied here is assignable to the middle to upper Cristatisporites Zone and to the succeeding Striatites Zone, thus signifying an Early Permian age for this section and facilitating correlation with strata of the Paraná and Paganzo Basins. From this and prior work, the Ordóñez well sequence embracing the Ordóñez and Victoriano Rodríguez Formations includes, in addition to the latter two zones, the preceding (late Pennsylvanian) Potonieisporites-Lundbladispora Zone which is known from the lower to mid-upper part of the Ordóñez Formation. Thus, the Carboniferous-Permian boundary can be inferred to lie within the upper part of the latter formation