2 resultados para Rényi’s entropy function
em University of Queensland eSpace - Australia
Resumo:
We introduce a novel way of measuring the entropy of a set of values undergoing changes. Such a measure becomes useful when analyzing the temporal development of an algorithm designed to numerically update a collection of values such as artificial neural network weights undergoing adjustments during learning. We measure the entropy as a function of the phase-space of the values, i.e. their magnitude and velocity of change, using a method based on the abstract measure of entropy introduced by the philosopher Rudolf Carnap. By constructing a time-dynamic two-dimensional Voronoi diagram using Voronoi cell generators with coordinates of value- and value-velocity (change of magnitude), the entropy becomes a function of the cell areas. We term this measure teleonomic entropy since it can be used to describe changes in any end-directed (teleonomic) system. The usefulness of the method is illustrated when comparing the different approaches of two search algorithms, a learning artificial neural network and a population of discovering agents. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
In recent years, the cross-entropy method has been successfully applied to a wide range of discrete optimization tasks. In this paper we consider the cross-entropy method in the context of continuous optimization. We demonstrate the effectiveness of the cross-entropy method for solving difficult continuous multi-extremal optimization problems, including those with non-linear constraints.