2 resultados para Récepteur AhR

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the mechanism by which an acidic domain (amino acids 515-583) of the aromatic hydrocarbon receptor (AhR) transactivates a target gene. Studies with glutathione S-transferase fusion proteins demonstrate that the wild-type acidic domain associates in vitro with Myb-binding protein la, whereas a mutant domain (F542A, 1569A) does not. AhR-defective cells reconstituted with an AhR containing the wild-type acidic domain exhibit normal AhR function; however, cells reconstituted with an AhR containing the mutant acidic domain do not function normally. Transient transfection of Myb-binding protein la into mouse hepatoma cells is associated with augmentation of AhR-dependent gene expression. Such augmentation does not occur when Myb-binding protein la is transfected into AhR-defective cells that have been reconstituted with an AhR that lacks the acidic domain. We infer that 1) Myb-binding protein la associates with AhR, thereby enhancing transactivation, and 2) the presence of AhR's acidic domain is both necessary and sufficient for Myb-binding protein la to increase AhR-dependent gene expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Intermediate phenotypes are often measured as a proxy for asthma. It is largely unclear to what extent the same set of environmental or genetic factors regulate these traits. Objective: Estimate the environmental and genetic correlations between self-reported and clinical asthma traits. Methods: A total of 3073 subjects from 802 families were ascertained through a twin proband. Traits measured included self-reported asthma, airway histamine responsiveness (AHR), skin prick response to common allergens including house dust mite (Dermatophagoides pteronyssinus [D. pter]), baseline lung function, total serum immunoglobulin E (IgE) and eosinophilia. Bivariate and multivariate analyses of eight traits were performed with adjustment for ascertainment and significant covariates. Results: Overall 2716 participants completed an asthma questionnaire and 2087 were clinically tested, including 1289 self-reported asthmatics (92% previously diagnosed by a doctor). Asthma, AHR, markers of allergic sensitization and eosinophilia had significant environmental correlations with each other (range: 0.23-0.89). Baseline forced expiratory volume in 1 s (FEV1) showed low environmental correlations with most traits. Fewer genetic correlations were significantly different from zero. Phenotypes with greatest genetic similarity were asthma and atopy (0.46), IgE and eosinophilia (0.44), AHR and D. pter (0.43) and AHR and airway obstruction (-0.43). Traits with greatest genetic dissimilarity were FEV1 and atopy (0.05), airway obstruction and IgE (0.07) and FEV1 and D. pter (0.11). Conclusion: These results suggest that the same set of environmental factors regulates the variation of many asthma traits. In addition, although most traits are regulated to great extent by specific genetic factors, there is still some degree of genetic overlap that could be exploited by multivariate linkage approaches.