63 resultados para Quasi-periodic Multilayers
em University of Queensland eSpace - Australia
Resumo:
In this paper, we investigate transmission of electromagnetic wave through aperiodic dielectric multilayers. A generic feature shown is that the mirror symmetry in the system can induce the resonant transmission, which originates from the positional correlations (for example, presence of dimers) in the system. Furthermore, the resonant transmission can be manipulated at a specific wavelength by tuning aperiodic structures with internal symmetry. The theoretical results are experimentally proved in the optical observation of aperiodic SiO2/TiO2 multilayers with internal symmetry. We expect that this feature may have potential applications in optoelectric devices such as the wavelength division multiplexing system.
Resumo:
The evolution of event time and size statistics in two heterogeneous cellular automaton models of earthquake behavior are studied and compared to the evolution of these quantities during observed periods of accelerating seismic energy release Drier to large earthquakes. The two automata have different nearest neighbor laws, one of which produces self-organized critical (SOC) behavior (PSD model) and the other which produces quasi-periodic large events (crack model). In the PSD model periods of accelerating energy release before large events are rare. In the crack model, many large events are preceded by periods of accelerating energy release. When compared to randomized event catalogs, accelerating energy release before large events occurs more often than random in the crack model but less often than random in the PSD model; it is easier to tell the crack and PSD model results apart from each other than to tell either model apart from a random catalog. The evolution of event sizes during the accelerating energy release sequences in all models is compared to that of observed sequences. The accelerating energy release sequences in the crack model consist of an increase in the rate of events of all sizes, consistent with observations from a small number of natural cases, however inconsistent with a larger number of cases in which there is an increase in the rate of only moderate-sized events. On average, no increase in the rate of events of any size is seen before large events in the PSD model.
Resumo:
For the first time it was possible to observe regular quasiperiodic scintillations (QPS) in VHF radio-satellite transmissions from orbiting satellites simultaneously at short (2.1 km) and long (121 km) meridional baselines in the vicinity of a typical mid-latitude station (Brisbane; 27.5degreesS and 152.9degreesE geog. and 35.6degrees invar.lat.), using three sites (St. Lucia-S, Taringa-T in Brisbane and Boreen Pt.-B, north of Brisbane). A few pronounced quasiperiodic (QP) events were recorded showing unambiguous regular structures at the sites which made it possible to deduce a time displacement of the regular fading minimum at S, T and B. The QP structure is highly dependent on the geometry of the ray-path from a satellite to the observer which is manifested as a change of a QP event from symmetrical to non-symmetrical for stations separated by 2.1 km, and to a radical change in the structure of the event over a distance of 121 km. It is suggested the short-duration intense QP events are due to a Fresnel diffraction (or a reflection mechanism) of radio-satellite signals by a single ionospheric irregularity in a form of an ellipsoid with a large ionization gradient along the major axis. The structure of a QP event depends on the angle of viewing of the irregular blob from a radio-satellite. In view of this it is suggested that the reported variety of the ionization formation, responsible for different types of QPS, is only apparent but not real. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
A statistical fractal automaton model is described which displays two modes of dynamical behaviour. The first mode, termed recurrent criticality, is characterised by quasi-periodic, characteristic events that are preceded by accelerating precursory activity. The second mode is more reminiscent of SOC automata in which large events are not preceded by an acceleration in activity. Extending upon previous studies of statistical fractal automata, a redistribution law is introduced which incorporates two model parameters: a dissipation factor and a stress transfer ratio. Results from a parameter space investigation indicate that a straight line through parameter space marks a transition from recurrent criticality to unpredictable dynamics. Recurrent criticality only occurs for models within one corner of the parameter space. The location of the transition displays a simple dependence upon the fractal correlation dimension of the cell strength distribution. Analysis of stress field evolution indicates that recurrent criticality occurs in models with significant long-range stress correlations. A constant rate of activity is associated with a decorrelated stress field.
Resumo:
We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never completely removes the instability. The low-frequency part of the gain spectrum is accurately predicted by an averaged theory and disappears for certain gratings. The high-frequency part is related to the inherent gain of the homogeneous non-phase-matched material and is a consistent spectral feature.
Resumo:
The frequency dependence of the interlayer conductivity of a layered Fermi liquid in a magnetic field that is tilted away from the normal to the layers is considered. For both quasi-one- and quasi-two-dimensional systems resonances occur when the frequency is a harmonic of the frequency at which the magnetic field causes the electrons to oscillate on the Fermi surface within the layers. The intensity of the different harmonic resonances varies significantly with the direction of the field. The resonances occur for both coherent and weakly incoherent interlayer transport and so their observation does not imply the existence of a three-dimensional Fermi surface. [S0163-1829(99)51240-X].
Resumo:
We examine the mean flux across a homogeneous membrane of a charged tracer subject to an alternating, symmetric voltage waveform. The analysis is based on the Nernst-Planck flux equation, with electric field subject to time dependence only. For low frequency electric fields the quasi steady-state flux can be approximated using the Goldman model, which has exact analytical solutions for tracer concentration and flux. No such closed form solutions can be found for arbitrary frequencies, however we find approximations for high frequency. An approximation formula for the average flux at all frequencies is also obtained from the two limiting approximations. Numerical integration of the governing equation is accomplished by use of the numerical method of lines and is performed for four different voltage waveforms. For the different voltage profiles, comparisons are made with the approximate analytical solutions which demonstrates their applicability. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this work we investigate several important aspects of the structure theory of the recently introduced quasi-Hopf superalgebras (QHSAs), which play a fundamental role in knot theory and integrable systems. In particular we introduce the opposite structure and prove in detail (for the graded case) Drinfeld's result that the coproduct Delta ' =_ (S circle times S) (.) T (.) Delta (.) S-1 induced on a QHSA is obtained from the coproduct Delta by twisting. The corresponding "Drinfeld twist" F-D is explicitly constructed, as well as its inverse, and we investigate the complete QHSA associated with Delta '. We give a universal proof that the coassociator Phi ' = (S circle times S circle times S) Phi (321) and canonical elements alpha ' = S(beta), beta ' = S(alpha) correspond to twisting, the original coassociator Phi = Phi (123) and canonical elements alpha, beta with the Drinfeld twist F-D. Moreover in the quasi-tri angular case, it is shown algebraically that the R-matrix R ' = (S circle times S)R corresponds to twisting the original R-matrix R with F-D. This has important consequences in knot theory, which will be investigated elsewhere.
Resumo:
Quasi-birth-and-death (QBD) processes with infinite “phase spaces” can exhibit unusual and interesting behavior. One of the simplest examples of such a process is the two-node tandem Jackson network, with the “phase” giving the state of the first queue and the “level” giving the state of the second queue. In this paper, we undertake an extensive analysis of the properties of this QBD. In particular, we investigate the spectral properties of Neuts’s R-matrix and show that the decay rate of the stationary distribution of the “level” process is not always equal to the convergence norm of R. In fact, we show that we can obtain any decay rate from a certain range by controlling only the transition structure at level zero, which is independent of R. We also consider the sequence of tandem queues that is constructed by restricting the waiting room of the first queue to some finite capacity, and then allowing this capacity to increase to infinity. We show that the decay rates for the finite truncations converge to a value, which is not necessarily the decay rate in the infinite waiting room case. Finally, we show that the probability that the process hits level n before level 0 given that it starts in level 1 decays at a rate which is not necessarily the same as the decay rate for the stationary distribution.
Resumo:
In this paper we extend the guiding function approach to show that there are periodic or bounded solutions for first order systems of ordinary differential equations of the form x1 =f(t,x), a.e. epsilon[a,b], where f satisfies the Caratheodory conditions. Our results generalize recent ones of Mawhin and Ward.
Resumo:
Experimental suppression of chaos has been achieved in an optically pumped far-infrared (NH3)-N-15 laser which displays Lorenz-like chaos. The method of control involves the application of a large amplitude slow (i.e., nonresonant) modulation of the pump power. This may be related to a delayed bifurcation to chaos observed when the pump power is ramped at a constant late.
Resumo:
The interlayer magnetoresistance of the quasi-two-dimensional metal alpha-(BEDT-TTF)(2)KHg(SCN)(4) is considered. In the temperature range from 0.5 to 10 K and for fields up to 10 T the magnetoresistance has a stronger temperature dependence than the zero-field resistance. Consequently Kohler's rule is not obeyed for any range of temperatures or fields. This means that the magnetoresistance cannot be described in terms of semiclassical transport on a single Fermi surface with a single scattering time. Possible explanations for the violations of Kohler's rule are considered, both within the framework of semiclassical transport theory and involving incoherent interlayer transport. The issues considered are similar to those raised by the magnetotransport of the cuprate superconductors. [S0163-1829(98)13219-8].
Resumo:
We consider the magnetoresistance oscillation phenomena in the Bechgaard salts (TMTSF)(2)X, where X = ClO4, PF6, and AsF6 in pulsed magnetic fields to 51 T. Of particular importance is the observation of a new magnetoresistance oscillation for X = ClO4 in its quenched state. In the absence of any Fermi-surface reconstruction due to anion order at low temperatures, all three materials exhibit nonmonotonic temperature dependence of the oscillation amplitude in the spin-density-wave (SDW) state. We discuss a model where, below a characteristic temperature T* within the SDW state, a magnetic breakdown gap opens. [S0163-1829(99)00904-2].
Resumo:
The assessment of groundwater conditions within an unconfined aquifer with a periodic boundary condition is of interest in many hydrological and environmental problems. A two-dimensional numerical model for density dependent variably saturated groundwater flow, SUTRA (Voss, C.I., 1984. SUTRA: a finite element simulation model for saturated-unsaturated, fluid-density dependent ground-water flow with energy transport or chemically reactive single species solute transport. US Geological Survey, National Center, Reston, VA) is modified in order to be able to simulate the groundwater flow in unconfined aquifers affected by a periodic boundary condition. The basic flow equation is changed from pressure-form to mixed-form. The model is also adjusted to handle a seepage-face boundary condition. Experiments are conducted to provide data for the groundwater response to the periodic boundary condition for aquifers with both vertical and sloping faces. The performance of the numerical model is assessed using those data. The results of pressure- and mixed-form approximations are compared and the improvement achieved through the mixed-form of the equation is demonstrated. The ability of the numerical model to simulate the water table and seepage-face is tested by modelling some published experimental data. Finally the numerical model is successfully verified against present experimental results to confirm its ability to simulate complex boundary conditions like the periodic head and the seepage-face boundary condition on the sloping face. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
When surveyed, many individuals without psychosis report a range of beliefs and experiences that are shared by patients with psychosis. This study aimed to examine quasi-psychotic beliefs and experiences in a sample of well Australians. 303 individuals were recruited from a defined catchment area as part of the Brisbane Psychosis Study. All subjects were screened with a modified SCAN in order to exclude psychoses. The Peters Delusional Inventory (PDI 40 items), items from the Chapmans' Psychosis Proneness Scale (PPS), the Communication Awareness Scale (CAS: a measure of awareness of thought disorder), items related to perceptions and beliefs from various schizotypy questionnaires and the Social Desirability (SD) items from the EPQ were administered. There was a significant negative correlation between age and total score on the PDI. There were significant positive correlations between the PDI, the PPS, the CAS and the items related to perception. There were no significant gender differences on any of the scores apart from SD (females had higher scores). Those with a positive family history of mental illness other than schizophrenia (n = 118) scored significantly higher on the PDI and scores related to perception, however they were no different on SD or the Psychosis Proneness items. There were no group differences on any of these items when those with a positive family history of schizophrenia (n = 27) were compared to the rest of the group. Well individuals who endorse delusional beliefs also tend to endorse items related to abnormal perceptions and awareness of thought disorder. The results of the study support the concept of a 'continuum of beliefs and experiences' in the general community that should inform our neurocognitive models of the symptoms of psychosis. The Stanley Foundation supported this project.