10 resultados para Quasi-birth-death
em University of Queensland eSpace - Australia
Resumo:
The birth, death and catastrophe process is an extension of the birth-death process that incorporates the possibility of reductions in population of arbitrary size. We will consider a general form of this model in which the transition rates are allowed to depend on the current population size in an arbitrary manner. The linear case, where the transition rates are proportional to current population size, has been studied extensively. In particular, extinction probabilities, the expected time to extinction, and the distribution of the population size conditional on nonextinction (the quasi-stationary distribution) have all been evaluated explicitly. However, whilst these characteristics are of interest in the modelling and management of populations, processes with linear rate coefficients represent only a very limited class of models. We address this limitation by allowing for a wider range of catastrophic events. Despite this generalisation, explicit expressions can still be found for the expected extinction times.
Resumo:
A new structure with the special property that instantaneous resurrection and mass disaster are imposed on an ordinary birth-death process is considered. Under the condition that the underlying birth-death process is exit or bilateral, we are able to give easily checked existence criteria for such Markov processes. A very simple uniqueness criterion is also established. All honest processes are explicitly constructed. Ergodicity properties for these processes are investigated. Surprisingly, it can be proved that all the honest processes are not only recurrent but also ergodic without imposing any extra conditions. Equilibrium distributions are then established. Symmetry and reversibility of such processes are also investigated. Several examples are provided to illustrate our results.
Resumo:
Poisson representation techniques provide a powerful method for mapping master equations for birth/death processes -- found in many fields of physics, chemistry and biology -- into more tractable stochastic differential equations. However, the usual expansion is not exact in the presence of boundary terms, which commonly occur when the differential equations are nonlinear. In this paper, a gauge Poisson technique is introduced that eliminates boundary terms, to give an exact representation as a weighted rate equation with stochastic terms. These methods provide novel techniques for calculating and understanding the effects of number correlations in systems that have a master equation description. As examples, correlations induced by strong mutations in genetics, and the astrophysical problem of molecule formation on microscopic grain surfaces are analyzed. Exact analytic results are obtained that can be compared with numerical simulations, demonstrating that stochastic gauge techniques can give exact results where standard Poisson expansions are not able to.
Resumo:
Many populations have a negative impact on their habitat or upon other species in the environment if their numbers become too large. For this reason they are often subjected to some form of control. One common control regime is the reduction regime: when the population reaches a certain threshold it is controlled (for example culled) until it falls below a lower predefined level. The natural model for such a controlled population is a birth-death process with two phases, the phase determining which of two distinct sets of birth and death rates governs the process. We present formulae for the probability of extinction and the expected time to extinction, and discuss several applications. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
This paper has three primary aims: to establish an effective means for modelling mainland-island metapopulations inhabiting a dynamic landscape: to investigate the effect of immigration and dynamic changes in habitat on metapopulation patch occupancy dynamics; and to illustrate the implications of our results for decision-making and population management. We first extend the mainland-island metapopulation model of Alonso and McKane [Bull. Math. Biol. 64:913-958,2002] to incorporate a dynamic landscape. It is shown, for both the static and the dynamic landscape models, that a suitably scaled version of the process converges to a unique deterministic model as the size of the system becomes large. We also establish that. under quite general conditions, the density of occupied patches, and the densities of suitable and occupied patches, for the respective models, have approximate normal distributions. Our results not only provide us with estimates for the means and variances that are valid at all stages in the evolution of the population, but also provide a tool for fitting the models to real metapopulations. We discuss the effect of immigration and habitat dynamics on metapopulations, showing that mainland-like patches heavily influence metapopulation persistence, and we argue for adopting measures to increase connectivity between this large patch and the other island-like patches. We illustrate our results with specific reference to examples of populations of butterfly and the grasshopper Bryodema tuberculata.
Resumo:
We provide a general framework for estimating persistence in populations which may be affected by catastrophic events, and which are either unbounded or have very large ceilings. We model the population using a birth-death process modified to allow for downward jumps of arbitrary size. For such processes, it is typically necessary to truncate the process in order to make the evaluation of expected extinction times (and higher-order moments) computationally feasible. Hence, we give particular attention to the selection of a cut-off point at which to truncate the process, and we present a simple method for obtaining quantitative indicators of the suitability of a chosen cut-off. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Let (Phi(t))(t is an element of R+) be a Harris ergodic continuous-time Markov process on a general state space, with invariant probability measure pi. We investigate the rates of convergence of the transition function P-t(x, (.)) to pi; specifically, we find conditions under which r(t) vertical bar vertical bar P-t (x, (.)) - pi vertical bar vertical bar -> 0 as t -> infinity, for suitable subgeometric rate functions r(t), where vertical bar vertical bar - vertical bar vertical bar denotes the usual total variation norm for a signed measure. We derive sufficient conditions for the convergence to hold, in terms of the existence of suitable points on which the first hitting time moments are bounded. In particular, for stochastically ordered Markov processes, explicit bounds on subgeometric rates of convergence are obtained. These results are illustrated in several examples.
Resumo:
We derive necessary and sufficient conditions for the existence of bounded or summable solutions to systems of linear equations associated with Markov chains. This substantially extends a famous result of G. E. H. Reuter, which provides a convenient means of checking various uniqueness criteria for birth-death processes. Our result allows chains with much more general transition structures to be accommodated. One application is to give a new proof of an important result of M. F. Chen concerning upwardly skip-free processes. We then use our generalization of Reuter's lemma to prove new results for downwardly skip-free chains, such as the Markov branching process and several of its many generalizations. This permits us to establish uniqueness criteria for several models, including the general birth, death, and catastrophe process, extended branching processes, and asymptotic birth-death processes, the latter being neither upwardly skip-free nor downwardly skip-free.
Resumo:
Let S be a countable set and let Q = (q(ij), i, j is an element of S) be a conservative q-matrix over S with a single instantaneous state b. Suppose that we are given a real number mu >= 0 and a strictly positive probability measure m = (m(j), j is an element of S) such that Sigma(i is an element of S) m(i)q(ij) = -mu m(j), j 0 b. We prove that there exists a Q-process P(t) = (p(ij) (t), i, j E S) for which m is a mu-invariant measure, that is Sigma(i is an element of s) m(i)p(ij)(t) = e(-mu t)m(j), j is an element of S. We illustrate our results with reference to the Kolmogorov 'K 1' chain and a birth-death process with catastrophes and instantaneous resurrection.
Resumo:
Objectives: To validate verbal autopsy (VA) procedures for use in sample vital registration. Verbal autopsy is an important method for deriving cause-specific mortality estimates where disease burdens are greatest and routine cause-specific mortality data do not exist. Methods: Verbal autopsies and medical records (MR) were collected for 3123 deaths in the perinatal/neonatal period, post-neonatal < 5 age group, and for ages of 5 years and over in Tanzania. Causes of death were assigned by physician panels using the International Classification of Disease, revision 10. Validity was measured by: cause-specific mortality fractions (CSMF); sensitivity; specificity and positive predictive value. Medical record diagnoses were scored for degree of uncertainty, and sensitivity and specificity adjusted. Criteria for evaluating VA performance in generating true proportional mortality were applied. Results: Verbal autopsy produced accurate CSMFs for nine causes in different age groups: birth asphyxia; intrauterine complications; pneumonia; HIV/AIDS; malaria (adults); tuberculosis; cerebrovascular diseases; injuries and direct maternal causes. Results for 20 other causes approached the threshold for good performance. Conclusions: Verbal autopsy reliably estimated CSMFs for diseases of public health importance in all age groups. Further validation is needed to assess reasons for lack of positive results for some conditions.