26 resultados para Quantum spin Hall insulator
em University of Queensland eSpace - Australia
Resumo:
We examine the teleportation of an unknown spin-1/2 quantum state along a quantum spin chain with an even number of sites. Our protocol, using a sequence of Bell measurements, may be viewed as an iterated version of the 2-qubit protocol of C. H. Bennett et al. [Phys. Rev. Lett. 70, 1895 (1993)]. A decomposition of the Hilbert space of the spin chain into 4 vector spaces, called Bell subspaces, is given. It is established that any state from a Bell subspace may be used as a channel to perform unit fidelity teleportation. The space of all spin-0 many-body states, which includes the ground states of many known antiferromagnetic systems, belongs to a common Bell subspace. A channel-dependent teleportation parameter O is introduced, and a bound on the teleportation fidelity is given in terms of O.
Resumo:
We show that the one-way channel formalism of quantum optics has a physical realization in electronic systems. In particular, we show that magnetic edge states form unidirectional quantum channels capable of coherently transporting electronic quantum information. Using the equivalence between one-way photonic channels and magnetic edge states, we adapt a proposal for quantum state transfer to mesoscopic systems using edge states as a quantum channel, and show that it is feasible with reasonable experimental parameters. We discuss how this protocol may be used to transfer information encoded in number, charge, or spin states of quantum dots, so it may prove useful for transferring quantum information between parts of a solid-state quantum computer
Resumo:
The skyrmions in SU(N) quantum Hall (QH) system are discussed. By analyzing the gauge field structure and the topological properties of this QH system it is pointed out that in the SU(N) QH system there can exist (N-1) types of skyrmion structures, instead of only one type of skyrmions. In this paper, by means of the Abelian projections according to the (N-1) Cartan subalgebra local bases, we obtain the (N-1) U(1) electromagnetic field tensors in the SU(N) gauge field of the QH system, and then derive (N-1) types of skyrmion structures from these U(1) sub-field tensors. Furthermore, in light of the phi-mapping topological current method, the topological charges and the motion of these skyrmions are also discussed.
Resumo:
We study the effect of coherent charge and spin fluctuations in a mesoscopic device composed of a quantum dot and an Aharonov-Bohm ring. We show that, while the charge fluctuations suppress the persistent current algebraically as a function of the level spacing of the ring, the spin fluctuations give rise to a completely different behavior. We discuss the origin of this difference in relation to the peculiar nature of the ground state in the Kondo limit. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We propose a scheme for quantum information processing based on donor electron spins in semiconductors, with an architecture complementary to the original Kane proposal. We show that a naive implementation of electron spin qubits provides only modest improvement over the Kane scheme, however through the introduction of global gate control we are able to take full advantage of the fast electron evolution timescales. We estimate that the latent clock speed is 100-1000 times that of the nuclear spin quantum computer with the ratio T-2/T-ops approaching the 10(6) level.
Resumo:
We give a theoretical treatment of the interaction of electronic excitations (excitions) in biomolecules and quantum dots with the surrounding polar solvent. Significant quantum decoherence occurs due to the interaction of the electric dipole moment of the solute with the fluctuating electric dipole moments of the individual molecules in the solvent. We introduce spin boson models which could be used to describe the effects. of decoherence on the quantum dynamics of biomolecules which undergo light-induced conformational change and on biomolecules or quantum dots which are coupled by Forster resonant energy transfer.
Resumo:
We study the electrical transport of a harmonically bound, single-molecule C-60 shuttle operating in the Coulomb blockade regime, i.e. single electron shuttling. In particular, we examine the dependance of the tunnel current on an ultra-small stationary force exerted on the shuttle. As an example, we consider the force exerted on an endohedral N@C-60 by the magnetic field gradient generated by a nearby nanomagnet. We derive a Hamiltonian for the full shuttle system which includes the metallic contacts, the spatially dependent tunnel couplings to the shuttle, the electronic and motional degrees of freedom of the shuttle itself and a coupling of the shuttle's motion to a phonon bath. We analyse the resulting quantum master equation and find that, due to the exponential dependence of the tunnel probability on the shuttle-contact separation, the current is highly sensitive to very small forces. In particular, we predict that the spin state of the endohedral electrons of N@C-60 in a large magnetic gradient field can be distinguished from the resulting current signals within a few tens of nanoseconds. This effect could prove useful for the detection of the endohedral spin-state of individual paramagnetic molecules such as N@C-60 and P@C-60, or the detection of very small static forces acting on a C-60 shuttle.
Resumo:
Within the ballistic transport picture, we have investigated the spin-polarized transport properties of a ferromagnetic metal/two-dimensional semiconductor (FM/SM) hybrid junction and an FM/FM/SM structure using quantum tunnelling theory. Our calculations indicate explicitly that the low spin injection efficiency (SIE) from an FM into an SM, compared with a ferromagnet/normal metal junction, originates from the mismatch of electron densities in the FM and SM. To enhance the SIE from an FM into an SM, we introduce another FM film between them to form FM/FM/SM double tunnel junctions, in which the quantum interference effect will lead to the current polarization exhibiting periodically oscillating behaviour, with a variation according to the thickness of the middle FM film and/or its exchange energy strength. Our results show that, for some suitable values of these parameters, the SIE can reach a very high level, which can also be affected by the electron density in the SM electrode.
Resumo:
Using the quantum tunneling theory, we investigate the spin-dependent transport properties of the ferromagnetic metal/Schottky barrier/semiconductor heterojunction under the influence of an external electric field. It is shown that increasing the electric field, similar to increasing the electron density in semiconductor, will result in a slight enhancement of spin injection in tunneling regime, and this enhancement is significantly weakened when the tunneling Schottky barrier becomes stronger. Temperature effect on spin injection is also discussed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We analyse the relation between the entanglement and spin-squeezing parameter in the two-atom Dicke model and identify the source of the discrepancy recently reported by Banerjee (2001 Preprint quant-ph/0110032) and Zhou et al (2002 J. Opt. B. Quantum Semiclass. Opt. 4 425), namely that one can observe entanglement without spin squeezing. Our calculations demonstrate that there are two criteria for entanglement, one associated with the two-photon coherences that create two-photon entangled states, and the other associated with populations of the collective states. We find that the spin-squeezing parameter correctly predicts entanglement in the two-atom Dicke system only if it is associated with two-photon entangled states, but fails to predict entanglement when it is associated with the entangled symmetric state. This explicitly identifies the source of the discrepancy and explains why the system can be entangled without spin squeezing. We illustrate these findings with three examples of the interaction of the system with thermal, classical squeezed vacuum, and quantum squeezed vacuum fields.
Resumo:
In this paper, we apply the canonical decomposition of two-qubit unitaries to find pulse schemes to control the proposed Kane quantum computer. We explicitly find pulse sequences for the controlled-NOT, swap, square root of swap, and controlled Z rotations. We analyze the speed and fidelity of these gates, both of which compare favorably to existing schemes. The pulse sequences presented in this paper are theoretically faster, with higher fidelity, and simpler. Any two-qubit gate may be easily found and implemented using similar pulse sequences. Numerical simulation is used to verify the accuracy of each pulse scheme.
Resumo:
We review progress at the Australian Centre for Quantum Computer Technology towards the fabrication and demonstration of spin qubits and charge qubits based on phosphorus donor atoms embedded in intrinsic silicon. Fabrication is being pursued via two complementary pathways: a 'top-down' approach for near-term production of few-qubit demonstration devices and a 'bottom-up' approach for large-scale qubit arrays with sub-nanometre precision. The 'top-down' approach employs a low-energy (keV) ion beam to implant the phosphorus atoms. Single-atom control during implantation is achieved by monitoring on-chip detector electrodes, integrated within the device structure. In contrast, the 'bottom-up' approach uses scanning tunnelling microscope lithography and epitaxial silicon overgrowth to construct devices at an atomic scale. In both cases, surface electrodes control the qubit using voltage pulses, and dual single-electron transistors operating near the quantum limit provide fast read-out with spurious-signal rejection.
Resumo:
Entanglement is defined for each vector subspace of the tensor product of two finite-dimensional Hilbert spaces, by applying the notion of operator entanglement to the projection operator onto that subspace. The operator Schmidt decomposition of the projection operator defines a string of Schmidt coefficients for each subspace, and this string is assumed to characterize its entanglement, so that a first subspace is more entangled than a second, if the Schmidt string of the second majorizes the Schmidt string of the first. The idea is applied to the antisymmetric and symmetric tensor products of a finite-dimensional Hilbert space with itself, and also to the tensor product of an angular momentum j with a spin 1/2. When adapted to the subspaces of states of the nonrelativistic hydrogen atom with definite total angular momentum (orbital plus spin), within the space of bound states with a given total energy, this leads to a complete ordering of those subspaces by their Schmidt strings.
Resumo:
In this paper we investigate the effect of dephasing on proposed quantum gates for the solid-state Kane quantum computing architecture. Using a simple model of the decoherence, we find that the typical error in a controlled-NOT gate is 8.3x10(-5). We also compute the fidelities of Z, X, swap, and controlled Z operations under a variety of dephasing rates. We show that these numerical results are comparable with the error threshold required for fault tolerant quantum computation.
Resumo:
We provide optimal measurement schemes for estimating relative parameters of the quantum state of a pair of spin systems. We prove that the optimal measurements are joint measurements on the pair of systems, meaning that they cannot be achieved by local operations and classical communication. We also demonstrate that in the limit where one of the spins becomes macroscopic, our results reproduce those that are obtained by treating that spin as a classical reference direction.