5 resultados para Quantum process
em University of Queensland eSpace - Australia
Resumo:
Complete and precise characterization of a quantum dynamical process can be achieved via the method of quantum process tomography. Using a source of correlated photons, we have implemented several methods, each investigating a wide range of processes, e.g., unitary, decohering, and polarizing. One of these methods, ancilla-assisted process tomography (AAPT), makes use of an additional ancilla system, and we have theoretically determined the conditions when AAPT is possible. Surprisingly, entanglement is not required. We present data obtained using both separable and entangled input states. The use of entanglement yields superior results, however.
Resumo:
We describe an approach for characterizing the process performed by a quantum gate using quantum process tomography, by first modeling the gate in an extended Hilbert space, which includes nonqubit degrees of freedom. To prevent unphysical processes from being predicted, present quantum process tomography procedures incorporate mathematical constraints, which make no assumptions as to the actual physical nature of the system being described. By contrast, the procedure presented here assumes a particular class of physical processes, and enforces physicality by fitting the data to this model. This allows quantum process tomography to be performed using a smaller experimental data set, and produces parameters with a direct physical interpretation. The approach is demonstrated by example of mode matching in an all-optical controlled-NOT gate. The techniques described are general and could be applied to other optical circuits or quantum computing architectures.
Resumo:
We demonstrate a new architecture for an optical entangling gate that is significantly simpler than previous realizations, using partially polarizing beam splitters so that only a single optical mode-matching condition is required. We demonstrate operation of a controlled-z gate in both continuous-wave and pulsed regimes of operation, fully characterizing it in each case using quantum process tomography. We also demonstrate a fully resolving, nondeterministic optical Bell-state analyzer based on this controlled-z gate. This new architecture is ideally suited to guided optics implementations of optical gates.
Resumo:
We investigate multipartite entanglement in relation to the process of quantum state exchange. In particular, we consider such entanglement for a certain pure state involving two groups of N trapped atoms. The state, which can be produced via quantum state exchange, is analogous to the steady-state intracavity state of the subthreshold optical nondegenerate parametric amplifier. We show that, first, it possesses some 2N-way entanglement. Second, we place a lower bound on the amount of such entanglement in the state using a measure called the entanglement of minimum bipartite entropy.
Resumo:
We investigate the quantum many-body dynamics of dissociation of a Bose-Einstein condensate of molecular dimers into pairs of constituent bosonic atoms and analyze the resulting atom-atom correlations. The quantum fields of both the molecules and atoms are simulated from first principles in three dimensions using the positive-P representation method. This allows us to provide an exact treatment of the molecular field depletion and s-wave scattering interactions between the particles, as well as to extend the analysis to nonuniform systems. In the simplest uniform case, we find that the major source of atom-atom decorrelation is atom-atom recombination which produces molecules outside the initially occupied condensate mode. The unwanted molecules are formed from dissociated atom pairs with nonopposite momenta. The net effect of this process-which becomes increasingly significant for dissociation durations corresponding to more than about 40% conversion-is to reduce the atom-atom correlations. In addition, for nonuniform systems we find that mode mixing due to inhomogeneity can result in further degradation of the correlation signal. We characterize the correlation strength via the degree of squeezing of particle number-difference fluctuations in a certain momentum-space volume and show that the correlation strength can be increased if the signals are binned into larger counting volumes.