17 resultados para Quantitative Dynamic General Equilibrium
em University of Queensland eSpace - Australia
Resumo:
We investigate the role of local connectedness in utility theory and prove that any continuous total preorder on a locally connected separable space is continuously representable. This is a new simple criterion for the representability of continuous preferences, and is not a consequence of the standard theorems in utility theory that use conditions such as connectedness and separability, second countability, or path-connectedness. Finally we give applications to problems involving the existence of value functions in population ethics and to the problem of proving the existence of continuous utility functions in general equilibrium models with land as one of the commodities. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We developed an anatomical mapping technique to detect hippocampal and ventricular changes in Alzheimer disease (AD). The resulting maps are sensitive to longitudinal changes in brain structure as the disease progresses. An anatomical surface modeling approach was combined with surface-based statistics to visualize the region and rate of atrophy in serial MRI scans and isolate where these changes link with cognitive decline. Fifty-two high-resolution MRI scans were acquired from 12 AD patients (age: 68.4 +/- 1.9 years) and 14 matched controls (age: 71.4 +/- 0.9 years), each scanned twice (2.1 +/- 0.4 years apart). 3D parametric mesh models of the hippocampus and temporal horns were created in sequential scans and averaged across subjects to identify systematic patterns of atrophy. As an index of radial atrophy, 3D distance fields were generated relating each anatomical surface point to a medial curve threading down the medial axis of each structure. Hippocampal atrophic rates and ventricular expansion were assessed statistically using surface-based permutation testing and were faster in AD than in controls. Using color-coded maps and video sequences, these changes were visualized as they progressed anatomically over time. Additional maps localized regions where atrophic changes linked with cognitive decline. Temporal horn expansion maps were more sensitive to AD progression than maps of hippocampal atrophy, but both maps correlated with clinical deterioration. These quantitative, dynamic visualizations of hippocampal atrophy and ventricular expansion rates in aging and AD may provide a promising measure to track AD progression in drug trials. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Univariate linkage analysis is used routinely to localise genes for human complex traits. Often, many traits are analysed but the significance of linkage for each trait is not corrected for multiple trait testing, which increases the experiment-wise type-I error rate. In addition, univariate analyses do not realise the full power provided by multivariate data sets. Multivariate linkage is the ideal solution but it is computationally intensive, so genome-wide analysis and evaluation of empirical significance are often prohibitive. We describe two simple methods that efficiently alleviate these caveats by combining P-values from multiple univariate linkage analyses. The first method estimates empirical pointwise and genome-wide significance between one trait and one marker when multiple traits have been tested. It is as robust as an appropriate Bonferroni adjustment, with the advantage that no assumptions are required about the number of independent tests performed. The second method estimates the significance of linkage between multiple traits and one marker and, therefore, it can be used to localise regions that harbour pleiotropic quantitative trait loci (QTL). We show that this method has greater power than individual univariate analyses to detect a pleiotropic QTL across different situations. In addition, when traits are moderately correlated and the QTL influences all traits, it can outperform formal multivariate VC analysis. This approach is computationally feasible for any number of traits and was not affected by the residual correlation between traits. We illustrate the utility of our approach with a genome scan of three asthma traits measured in families with a twin proband.
Resumo:
As alcohol molecules such as methanol and ethanol have both polar and non-polar groups, their adsorption behavior is governed by the contributions of dispersion interaction (alkyl group) and hydrogen bonding (OH group). In this paper, the adsorption behavior of alcohol molecules and its effect on transport processes are elucidated. From the total permeability (B-T) of alcohol molecules in activated carbon, an adsorption mechanism is proposed, describing well the experimental data, by taking combination effects of clustering, entering micropores, layering and pore filling processes. Unlike the case of non-polar compounds, it was found that at low pressures there are two rises in the BT of alcohol molecules in activated carbon. The first rise is due to the major contribution of surface diffusion to the transport (which is the case of non-polar molecules) and the second one may be associated with cluster formation at the edge of micropores and entering micropores when the clusters are sufficiently large enough to induce a dispersive energy. In addition the clusters formed may enhance surface diffusion at low pressures and hinder gas phase diffusion and flow in meso/macropores. (c) 2006 Elsevier Ltd. All fights reserved.
Resumo:
A mathematical model that describes the operation of a sequential leach bed process for anaerobic digestion of organic fraction of municipal solid waste (MSW) is developed and validated. This model assumes that ultimate mineralisation of the organic component of the waste occurs in three steps, namely solubilisation of particulate matter, fermentation to volatile organic acids (modelled as acetic acid) along with liberation of carbon dioxide and hydrogen, and methanogenesis from acetate and hydrogen. The model incorporates the ionic equilibrium equations arising due to dissolution of carbon dioxide, generation of alkalinity from breakdown of solids and dissociation of acetic acid. Rather than a charge balance, a mass balance on the hydronium and hydroxide ions is used to calculate pH. The flow of liquid through the bed is modelled as occurring through two zones-a permeable zone with high flushing rates and the other more stagnant. Some of the kinetic parameters for the biological processes were obtained from batch MSW digestion experiments. The parameters for flow model were obtained from residence time distribution studies conducted using tritium as a tracer. The model was validated using data from leach bed digestion experiments in which a leachate volume equal to 10% of the fresh waste bed volume was sequenced. The model was then tested, without altering any kinetic or flow parameters, by varying volume of leachate that is sequenced between the beds. Simulations for sequencing/recirculating 5 and 30% of the bed volume are presented and compared with experimental results. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We present a new version of non-local density functional theory (NL-DFT) adapted to description of vapor adsorption isotherms on amorphous materials like non-porous silica. The novel feature of this approach is that it accounts for the roughness of adsorbent surface. The solid–fluid interaction is described in the same framework as in the case of fluid–fluid interactions, using the Weeks–Chandler–Andersen (WCA) scheme and the Carnahan–Starling (CS) equation for attractive and repulsive parts of the Helmholtz free energy, respectively. Application to nitrogen and argon adsorption isotherms on non-porous silica LiChrospher Si-1000 at their boiling points, recently published by Jaroniec and co-workers, has shown an excellent correlative ability of our approach over the complete range of pressures, which suggests that the surface roughness is mostly the reason for the observed behavior of adsorption isotherms. From the analysis of these data, we found that in the case of nitrogen adsorption short-range interactions between oxygen atoms on the silica surface and quadrupole of nitrogen molecules play an important role. The approach presented in this paper may be further used in quantitative analysis of adsorption and desorption isotherms in cylindrical pores such as MCM-41 and carbon nanotubes.
Resumo:
We provide a general framework for estimating persistence in populations which may be affected by catastrophic events, and which are either unbounded or have very large ceilings. We model the population using a birth-death process modified to allow for downward jumps of arbitrary size. For such processes, it is typically necessary to truncate the process in order to make the evaluation of expected extinction times (and higher-order moments) computationally feasible. Hence, we give particular attention to the selection of a cut-off point at which to truncate the process, and we present a simple method for obtaining quantitative indicators of the suitability of a chosen cut-off. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
We report methods for correcting the photoluminescence emission and excitation spectra of highly absorbing samples for re-absorption and inner filter effects. We derive the general form of the correction, and investigate various methods for determining the parameters. Additionally, the correction methods are tested with highly absorbing fluorescein and melanin (broadband absorption) solutions; the expected linear relationships between absorption and emission are recovered upon application of the correction, indicating that the methods are valid. These procedures allow accurate quantitative analysis of the emission of low quantum yield samples (such as melanin) at concentrations where absorption is significant. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a thermodynamic analysis of capillary condensation phenomena in cylindrical pores. Here, we modified the Broekhoff and de Boer (BdB) model for cylindrical pores accounting for the effect of the pore radius on the potential exerted by the pore walls. The new approach incorporates the recently published standard nitrogen and argon adsorption isotherm on nonporous silica LiChrospher Si-1000. The developed model is tested against the nonlocal density functional theory (NLDFT), and the criterion for this comparison is the condensation/evaporation pressure versus the pore diameter. The quantitative agreement between the NLDFT and the refined version of the BdB theory is ascertained for pores larger than 2 nm. The modified BdB theory was applied to the experimental adsorption branch of adsorption isotherms of a number of MCM-41 samples to determine their pore size distributions (PSDs). It was found that the PSDs determined with the new BdB approach coincide with those determined with the NLDFT (also using the experimental adsorption branch). As opposed to the NLDFT, the modified BdB theory is very simple in its utilization and therefore can be used as a convenient tool to obtain PSDs of all mesoporous solids from the analysis of the adsorption branch of adsorption isotherms of any subcritical fluids.
Resumo:
The temperature dependence of the X-ray crystal structure and powder EPR spectrum of [(HC(Ph2PO)(3))(2)CU]-(ClO4)(2)center dot 2H(2)O is reported, and the structure at room temperature confirms that reported previously. Below similar to 100 K, the data imply a geometry with near elongated tetragonal symmetry for the [(HC(Ph2PO)(3))(2)Cu](2+) complex, but on warming the two higher Cu-O bond lengths and g-values progressively converge, and by 340 K the bond lengths correspond to a compressed tetragonal geometry. The data may be interpreted satisfactorily assuming an equilibrium among the energy levels of a Cu-O-6 polyhedron subjected to Jahn-Teller vibronic coupling and a lattice strain. However, agreement with the experiment is obtained only if the orthorhombic component of the lattice strain decreases to a negligible value as the temperature approaches 340 K.
Resumo:
This research used resource allocation theory to generate predictions regarding dynamic relationships between self-efficacy and task performance from 2 levels of analysis and specificity. Participants were given multiple trials of practice on an air traffic control task. Measures of task-specific self-efficacy and performance were taken at repeated intervals. The authors used multilevel analysis to demonstrate differential and dynamic effects. As predicted, task-specific self-efficacy was negatively associated with task performance at the within-person level. On the other hand, average levels of task-specific self-efficacy were positively related to performance at the between-persons level and mediated the effect of general self-efficacy. The key findings from this research relate to dynamic effects - these results show that self-efficacy effects can change over time, but it depends on the level of analysis and specificity at which self-efficacy is conceptualized. These novel findings emphasize the importance of conceptualizing self-efficacy within a multilevel and multispecificity framework and make a significant contribution to understanding the way this construct relates to task performance.
Resumo:
(Magill, M., Quinzii, M., 2002. Capital market equilibrium with moral hazard. Journal of Mathematical Economics 38, 149-190) showed that, in a stockmarket economy with private information, the moral hazard problem may be resolved provided that a spanning overlap condition is satisfed. This result depends on the assumption that the technology is given by a stochastic production function with a single scalar input. The object of the present paper is to extend the analysis of Magill and Quinzii to the case of multiple inputs. We show that their main result extends to this general case if and only if, for each firm, the number of linearly independent combinations of securities having payoffs correlated with, but not dependent on, the firms output is equal to the number of degrees of freedom in the firm's production technology.
Resumo:
In contrast to the well-established relationship between cadherins and the actin cytoskeleton, the potential link between cadherins and microtubules (MTs) has been less extensively investigated. We now identify a pool of MTs that extend radially into cell-cell contacts and are inhibited by manoeuvres that block the dynamic activity of MT plus-ends (e.g. in the presence of low concentrations of nocodazole and following expression of a CLIP-170 mutant). Blocking dynamic MTs perturbed the ability of cells to concentrate and accumulate E-cadherin at cell-cell contacts, as assessed both by quantitative immunofluorescence microscopy and fluorescence recovery after photobleaching (FRAP) analysis, but did not affect either transport of E-cadherin to the plasma membrane or the amount of E-cadherin expressed at the cell surface. This indicated that dynamic MTs allow cells to concentrate E-cadherin at cell-cell contacts by regulating the regional distribution of E-cadherin once it reaches the cell surface. Importantly, dynamic MTs were necessary for myosin II to accumulate and be activated at cadherin adhesive contacts, a mechanism that supports the focal accumulation of E-cadherin. We propose that this population of MTs represents a novel form of cadherin-MT cooperation, where cadherin adhesions recruit dynamic MTs that, in turn, support the local concentration of cadherin molecules by regulating myosin II activity at cell-cell contacts.