3 resultados para Quality Traits

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Improvement of end-use quality in bread wheat depends on a thorough understanding of current wheat quality and the influences of genotype (G), environment (E), and genotype by environment interaction (G x E) on quality traits. Thirty-nine spring-sown spring wheat (SSSW) cultivars and advanced lines from China were grown in four agro-ecological zones comprising seven locations during the 1998 and 1999 cropping seasons. Data on 12 major bread-making quality traits were used to investigate the effect of G, E, and G x E on these traits. Wide range variability for protein quantity and quality, starch quality parameters and milling quality in Chinese SSSW was observed. Genotype and environment were found to significantly influence all quality parameters as major effects. Kernel hardness, flour yield, Zeleny sedimentation value and mixograph properties were mainly influenced by the genetic variance components, while thousand kernel weight, test weight, and falling number were mostly influenced by the environmental variance components. Genotype, environment, and their interaction had important effects on test weight, mixing development time and RVA parameters. Cultivars originating from Zone VI (northeast) generally expressed high kernel hardness, good starch quality, but poor milling and medium to weak mixograph performance; those from Zone VII (north) medium to good gluten and starch quality, but low milling quality; those from Zone VIII (central northwest) medium milling and starch quality, and medium to strong mixograph performance; those from Zone IX (western/southwestern Qinghai-Tibetan Plateau) medium milling quality, but poor gluten strength and starch parameters; and those from Zone X (northwest) high milling quality, strong mixograph properties, but low protein content. Samples from Harbin are characterized by good gluten and starch quality, but medium to poor milling quality; those from Hongxinglong by strong mixograph properties, medium to high milling quality, but medium to poor starch quality and medium to low protein content; those from Hohhot by good gluten but poor milling quality; those from Linhe by weak gluten quality, medium to poor milling quality; those from Lanzhou by poor bread-making and starch quality; those from Yongning by acceptable bread-making and starch quality and good milling quality; and those from Urumqi by good milling quality, medium gluten quality and good starch pasting parameters. Our findings suggest that Chinese SSSW quality could be greatly enhanced through genetic improvement for targeted well-characterized production environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of a once only administration of a metabolite of vitamin D-3 (HY center dot D-(R)-25-hydroxy vitamin D-3) on myofibrillar meat tenderness in Australian Brahman cattle was studied. Ninety-six Brahman steers of three phenotypes (indo-Brazil, US and US/European) and with two previous hormonal growth promotant (HGP) histories (implanted or not implanted with Compudose((R))) were fed a standard feedlot ration for 70 d. Treatment groups of 24 steers were offered daily 10 g/head HY center dot D-(R) (125 mg 25-hydroxyvitamin D-3) for 6, 4, or 2 d before slaughter. One other group of 24 steers was given the basal diet without HY center dot D-(R). Feed lot performance, blood and muscle samples and carcass quality data were collected at slaughter. Calcium, magnesium, potassium, sodium, iron and Vitamin D-3 metabolites were measured in plasma and longissimus dorsi muscle. Warner-Bratzler (WB) shear force (peak force, initial yield) and other objective meat quality measurements were made on the longissimus dorsi muscle of each steer after ageing for 1, 7 and 14 d post-mortem at 0-2 degrees C. There were no significant effects of HY center dot D-(R) supplements on average daily gain (ADG, 1.28-1.45 kg/d) over the experimental period. HY center dot D-(R) supplements given 6 d prior to slaughter resulted in significantly higher (P < 0.05) initial yield values compared to supplements given 2 d prior to slaughter. Supplementation had no significant effect on meat colour, ultimate pH, sarcomere length, cooking loss, instron compression or peak force. There was a significant treatment (HY center dot D-(R)) by phenotype/HGP interaction for peak force (P = 0.028), in which Indo-Brazil steers without previous HGP treatment responded positively (increased tenderness) to HY center dot D-(R) supplements at 2 d when compared with Indo-Brazil steers previously given HGP. There were no significant effects of treatment on other phenotypes. HY center dot D-(R) supplements did not affect muscle or plasma concentrations of calcium, potassium or sodium, but did significantly decrease plasma magnesium and iron concentrations when given 2 d before slaughter. There were no detectable amounts of 25-hydroxyvitamin D-3 in the blood or muscle of any cattle at slaughter. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eight milling quality and protein properties of autumn-sown Chinese wheats were investigated using 59 cultivars and advanced lines grown in 14 locations in China from 1995 to 1998. Wide ranges of variability for all traits were observed across genotypes and locations. Genotype, location, year, and their interactions all significantly influenced most of the quality parameters. Kernel hardness, Zeleny sedimentation value, and mixograph development time were predominantly influenced by the effects of genotype. Genotype, location and genotype x location interaction were all important sources of variation for thousand kernel weight, test weight, protein content, and falling number, whereas genotype x location interaction had the largest effect on flour yield. Most of the genotypes were characterized by weak gluten strength with Zeleny sedimentation values less than 40 ml and mixograph development time shorter than 3 min. Eight groups of genotypes were recognized based on the average quality performance, grain hardness and gluten strength were the two parameters that determined the grouping, with contributions from protein content. Genotypes such as Zhongyou 16 and Annong 8903 displayed good milling quality, high grain hardness, protein content and strong gluten strength with high sedimentation value and long mixograph development time. Genotypes such as Lumai 15 and Yumai 18 were characterized by low grain hardness, protein content and weak gluten strength. Genotypes such as Yannong 15 and Chuanmai 24 were characterized by strong gluten strength with high sedimentation value and long mixograph development time, but low grain hardness and protein content lower than 12.3%. Genotypes such as Jingdong 6 and Xi'an 8 had weak gluten strength, but with high grain hardness and protein content higher than 12.2%. Five groups of locations were identified, and protein content and gluten strength were the two parameters that determined the grouping. Beijing, Shijiazhuang, Nanyang, Zhumadian and Nanjing produced wheats with medium to strong gluten strength and medium protein content, although there was still a large variation for most of the traits investigated between the locations. Wheat produced in Yantai was characterized by strong gluten strength, but with low protein content. Jinan, Anyang and Linfen locations produced wheats with medium to weak gluten strength and medium to high protein content. Wheats produced in Yangling, Zhenzhou, and Chengdu were characterized by weak gluten strength with medium to low protein content, whereas wheats produced in Xuzhou and Wuhan were characterized by weak gluten strength with low protein content. Industrial grain quality could be substantially improved through integrating knowledge of geographic genotype distribution with key location variables that affected end-use quality.