6 resultados para QCD PHASE-TRANSITION

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that a specific implementation of a unitary map on multiple qubits in an ion trap is physically equivalent to a Hamiltonian evolution that belongs to the same universality class as the transverse Ising Hamiltonian. We suggest experimental signatures, and present numerical simulations for the case of four qubits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Monte Carlo simulation method is Used 10 study the effects of adsorption strength and topology of sites on adsorption of simple Lennard-Jones fluids in a carbon slit pore of finite length. Argon is used as a model adsorbate, while the adsorbent is modeled as a finite carbon slit pore whose two walls composed of three graphene layers with carbon atoms arranged in a hexagonal pattern. Impurities having well depth of interaction greater than that of carbon atom are assumed to be grafted onto the surface. Different topologies of the impurities; corner, centre, shelf and random topologies are studied. Adsorption isotherms of argon at 87.3 K are obtained for pore having widths of 1, 1.5 and 3 11111 using a Grand Canonical Monte Carlo simulation (GCMC). These results are compared with isotherms obtained for infinite pores. It is shown that the Surface heterogeneity affects significantly the overall adsorption isotherm, particularly the phase transition. Basically it shifts the onset of adsorption to lower pressure and the adsorption isotherms for these four impurity models are generally greater than that for finite pore. The positions of impurities on solid Surface also affect the shape of the adsorption isotherm and the phase transition. We have found that the impurities allocated at the centre of pore walls provide the greatest isotherm at low pressures. However when the pressure increases the impurities allocated along the edges of the graphene layers show the most significant effect on the adsorption isotherm. We have investigated the effect of surface heterogeneity on adsorption hysteresis loops of three models of impurity topology, it shows that the adsorption branches of these isotherms are different, while the desorption branches are quite close to each other. This suggests that the desorption branch is either the thermodynamic equilibrium branch or closer to it than the adsorption branch. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many food materials exist in a disordered amorphous solid state due to processing. Therefore, understanding the concept of amorphous state, its important phase transition (i.e., glass transition), and the related phenomena (e.g., enthalpy relaxation) is important to food scientists. Food saccharides, including mono-, di-, oligo-, and polysaccharides, are among the most important major components in food. Focusing on the food saccharides, this review covers important topics related to amorphous solids, including the concept and molecular arrangement of amorphous solid, the formation of amorphous food saccharides, the concept of glass transition and enthalpy relaxation, physical property changes and molecular mobility around the glass transition, measurement of the glass transition and enthalpy relaxation, their mathematical descriptions and models, and influences on food stability.