9 resultados para Pulse techniques (Electronics)

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in arterial distensibility have been widely used to identify the presence of cardiovascular abnormalities like hypertension. Pulse wave velocity (PWV) has shown to be related to arterial distensibility. However, the lack of suitable techniques to measure PWV nonintrusively has impeded its clinical usefulness. Pulse transit time (PTT) is a noninvasive technique derived from the principle of PWV. PTT has shown its capabilities in cardiovascular and cardiorespiratory studies in adults. However, no known study has been conducted to understand the suitability and utility of PTT to estimate PWV in children. Two computational methods to derive PWV from PTT values obtained from 23 normotensive Caucasian children (19 males, aged 5-12 years old) from their finger and toe were conducted. Furthermore, the effects of adopting different postures on the PWV derivations were investigated. Statistical analyses were performed in comparison with two previous PWV studies conducted on children. Results revealed that PWV derived from the upper limb correlated significantly (P

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies have shown that increased arterial stiffening can be an indication of cardiovascular diseases like hypertension. In clinical practice, this can be detected by measuring the blood pressure (BP) using a sphygmomanometer but it cannot be used for prolonged monitoring. It has been established that pulse wave velocity (PWV) is a direct measure of arterial stiffening but its usefulness is hampered by the absence of non-invasive techniques to estimate it. Pulse transit time (PTT) is a simple and non-invasive method derived from PWV. However, limited knowledge of PTT in children is found in the present literature. The aims of this study are to identify independent variables that confound PTT measure and describe PTT regression equations for healthy children. Therefore, PTT reference values are formulated for future pathological studies. Fifty-five Caucasian children (39 male) aged 8.4 +/- 2.3 yr (range 5-12 yr) were recruited. Predictive equations for PTT were obtained by multiple regressions with age, vascular path length, BP indexes and heart rate. These derived equations were compared in their PWV equivalent against two previously reported equations and significant agreement was obtained (p < 0.05). Findings herein also suggested that PTT can be useful as a continuous surrogate BP monitor in children.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characteristics obtained from peripheral pulses can be used to assess the status of cardiovascular system of subjects. However, nonintrusive techniques are preferred when prolonged monitoring is required for their comfort. Pulse transit time ( PTT) measurement has showed its potentials to monitor timing changes in peripheral pulse in cardiovascular and respiratory studies. In children, the common peripheries used for these studies are fingers or toes. Presently, there is no known study conducted on children to investigate the possible physiologic parameters that can confound PTT measure at these sites. In this study, PTT values from both peripheral sites were recorded from 55 healthy Caucasian children ( 39 male) with mean age of 8.4 +/- 2.3 years ( range 5 - 12 years). Peripheries' path length, heart rate, systolic blood pressure, diastolic blood pressure ( DBP) and mean arterial pressure ( MAP) were measured to investigate their contributions to PTT measurement. The results reveal that PTT is significantly related to all parameters ( P< 0.05), except for DBP and MAP. Age is observed to be the dominant factor that affects PTT at both peripheries in a child. Regression equations for PTT were derived for measuring from a finger and toe, ( 6.09 age + 189.2) ms and ( 6.70 age + 243.0) ms, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies have shown that an increase in arterial stiffening can indicate the presence of cardiovascular diseases like hypertension. Current gold standard in clinical practice is by measuring the blood pressure of patients using a mercury sphygmomanometer. However, the nature of this technique is not suitable for prolonged monitoring. It has been established that pulse wave velocity is a direct measure of arterial stiffening. However, its usefulness is hampered by the absence of techniques to estimate it non-invasively. Pulse transit time (PTT) is a simple and non-intrusive method derived from pulse wave velocity. It has shown its capability in childhood respiratory sleep studies. Recently, regression equations that can predict PTT values for healthy Caucasian children were formulated. However, its usefulness to identify hypertensive children based on mean PTT values has not been investigated. This was a continual study where 3 more Caucasian male children with known clinical hypertension were recruited. Results indicated that the PTT predictive equations are able to identify hypertensive children from their normal counterparts in a significant manner (p < 0.05). Hence, PTT can be a useful diagnostic tool in identifying hypertension in children and shows potential to be a non-invasive continual monitor for arterial stiffening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, experimental investigations are performed into assessing the quality of communication link between Bluetooth devices in an indoor environment, as an initial step of demonstrating benefits of diversity and smart antenna techniques in mobile computing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current ultra-wideband communication systems use short narrow timed pulse sequences to transmit information. Some disadvantages of UWB communication systems are its interference of other conventional wireless systems and its reliance on time hopping schemes for multiple access. This paper presents a novel UWB data modulation scheme based on pulse shaping. This modulation scheme adds more flexibility for data modulation in UWB communication systems. The modulation scheme encodes data in both the timing and frequency spectrum of the transmitted pulse. This has the potential to improve data throughput rates and to lower interference between UWB and narrowband systems.