10 resultados para Protein Composition
em University of Queensland eSpace - Australia
Resumo:
1. Protein utilisation and turnover were measured in male chickens sampled from a line selected for high breast yield and a randombred control line (lines QL and CL, experiment 1) and in male chickens sampled from lines selected for either high or low abdominal fatness (lines FL and LL, experiment 2). In each experiment, 18 birds per line were given iso-energetic (12.9 MJ ME/kg) diets containing either 120 or 220 g CP/kg from 21 to 29 d (experiment 1) and 33 to 43 d (experiment 2). 2. Measurements were made of growth rate, food intake, body composition, excreta production and N-tau-methylhistidine excretion as a measure of myofibrillar protein breakdown, and fractional rates (%/d) of protein deposition, breakdown and synthesis were calculated. 3. In experiment 1, there were no significant differences between the line means for the fractional measures of protein turnover, but there was marked differential response in the two lines in the fractional rates of protein deposition, breakdown and synthesis, to increase in protein intake. The positive slope of the regressions of fractional (%/d) protein deposition and synthesis rates on protein intake (g/d/kg BW) were approximately 1.4- and 2.0-fold higher respectively in the QL than the CL line birds, and the negative slope of the regression of fractional breakdown rate on protein intake was approximately threefold greater in the CL than the QL line birds. 4. In experiment 2, fractional deposition rate was 6.2% lower, but fractional breakdown rate 9.4% higher in the LL than the FL birds, whilst there was essentially no difference in response of the FL and LL birds in the components of protein turnover to increase in protein intake. Line differences in deposition and breakdown rates were thus a reflection of the considerably higher (20%) food and hence protein intake in the FL than the LL birds. 5. The differential line responses in protein turnover in the two experiments suggest that selection for increased breast muscle yield and for reduced body fatness manipulate different physiological pathways in relation to protein turnover, but neither selection strategy results in an improvement in net protein utilisation at typical levels of protein intake by birds on commercial broiler diets, through a reduction in protein breakdown rate.
Resumo:
OBJECTIVES: To examine the association between physical activity and inflammatory markers, with consideration for body fatness and antioxidant use. DESIGN: Cross-sectional study, using baseline data from the Health, Aging and Body Composition Study. SETTING: Metropolitan areas surrounding Pittsburgh, Pennsylvania, and Memphis, Tennessee. PARTICIPANTS: Black and white, well-functioning men and women (N=3,075), aged 70 to 79. MEASUREMENTS: Interviewer-administered questionnaires of previous-week household, walking, exercise, and occupational/volunteer physical activities. Analysis of covariance was used to examine the association between activity level and serum C-reactive protein (CRP), interleukin-6 (IL-6), and plasma tumor necrosis factor alpha (TNFalpha) with covariate adjustment. Antioxidant supplement use (multivitamin, vitamins E or C, beta carotene) was evaluated as an effect modifier of the association. RESULTS: Higher levels of exercise were associated with lower levels of CRP (P
Resumo:
Background: Tuberculosis is an important cause of wasting. The functional consequences of wasting and recovery may depend on the distribution of lost and gained nutrient stores between protein and fat masses. Objective: The goal was to study nutrient partitioning, ie, the proportion of weight change attributable to changes in fat mass (FM) versus protein mass (PM), during anti mycobacterial treatment. Design: Body-composition measures were made of 21 men and 9 women with pulmonary tuberculosis at baseline and after 1 and 6 mo of treatment. All subjects underwent dual-energy X-ray absorptiometry and deuterium bromide dilution tests, and a four-compartment model of FM, total body water (TBW), bone minerals (BM), and PM was derived. The ratio of PM to FM at any time was expressed as the energy content (p-ratio). Changes in the p-ratio were related to disease severity as measured by radiologic criteria. Results: Patients gained 10% in body weight (P < 0.001) from baseline to month 6. This was mainly due to a 44% gain in FM (P < 0.001); PM, BM, and TBW did not change significantly. Results were similar in men and women. The p-ratio decreased from baseline to month 1 and then fell further by month 6. Radiologic disease severity was not correlated with changes in the p-ratio. Conclusions: Microbiological cure of tuberculosis does not restore PM within 6 mo, despite a strong anabolic response. Change in the p-ratio is a suitable parameter for use in studying the effect of disease on body composition because it allows transformation of such effects into a normal distribution across a wide range of baseline proportion between fat and protein mass.
Resumo:
The majority of GLUT4 is sequestered in unique intracellular vesicles in the absence of insulin. Upon insulin stimulation GLUT4 vesicles translocate to, and fuse with, the plasma membrane. To determine the effect of GLUT4 content on the distribution and subcellular trafficking of GLUT4 and other vesicle proteins, adipocytes of adipose-specific, GLUT4-deficient (aP2-GLUT4-/-) mice and adipose-specific, GLUT4-overexpressing (aP2GLUT4- Tg) mice were studied. GLUT4 amount was reduced by 80 - 95% in aP2-GLUT4-/- adipocytes and increased similar to10-fold in aP2-GLUT4-Tg adipocytes compared with controls. Insulin-responsive aminopeptidase ( IRAP) protein amount was decreased 35% in aP2-GLUT4-/- adipocytes and increased 45% in aP2-GLUT4-Tg adipocytes. VAMP2 protein was also decreased by 60% in aP2-GLUT4-/- adipocytes and increased 2-fold in aP2GLUT4- Tg adipocytes. IRAP and VAMP2 mRNA levels were unaffected in aP2-GLUT4-Tg, suggesting that overexpression of GLUT4 affects IRAP and VAMP2 protein stability. The amount and subcellular distribution of syntaxin4, SNAP23, Munc-18c, and GLUT1 were unchanged in either aP2-GLUT4-/- or aP2-GLUT4-Tg adipocytes, but transferrin receptor was partially redistributed to the plasma membrane in aP2-GLUT4-Tg adipocytes. Immunogold electron microscopy revealed that overexpression of GLUT4 in adipocytes increased the number of GLUT4 molecules per vesicle nearly 2-fold and the number of GLUT4 and IRAP-containing vesicles per cell 3-fold. In addition, the proportion of cellular GLUT4 and IRAP at the plasma membrane in unstimulated aP2-GLUT4-Tg adipocytes was increased 4- and 2-fold, respectively, suggesting that sequestration of GLUT4 and IRAP is saturable. Our results show that GLUT4 overexpression or deficiency affects the amount of other GLUT4-vesicle proteins including IRAP and VAMP2 and that GLUT4 sequestration is saturable.
Resumo:
By establishing mouse primary keratinocytes (KCs) in culture, we were able, for the first time, to express papillomavirus major capsid (L1) proteins by transient transfection of authentic or codon-modified L1 gene expression plasmids. We demonstrate in vitro and in vivo that gene codon composition is in part responsible for differentiation-dependent expression of L1 protein in KCs. L1 mRNA was present in similar amounts in differentiated and undifferentiated KCs transfected with authentic or codon-modified L1 genes and had a similar half-life, demonstrating that L1 protein production is posttranscriptionally regulated. We demonstrate further that KCs substantially change their tRNA profiles upon differentiation. Aminoacyl-tRNAs from differentiated KCs but not undifferentiated KCs enhanced the translation of authentic L1 mRNA, suggesting that differentiation-associated change to tRNA profiles enhances L1 expression in differentiated KCs. Thus, our data reveal a novel mechanism for regulation of gene expression utilized by a virus to direct viral capsid protein expression to the site of virion assembly in mature KCs. Analysis of two structural proteins of KCs, involucrin and keratin 14, suggests that translation of their mRNAs is also regulated, in association with KC differentiation in vitro, by a similar mechanism
Resumo:
Background: Protein tertiary structure can be partly characterized via each amino acid's contact number measuring how residues are spatially arranged. The contact number of a residue in a folded protein is a measure of its exposure to the local environment, and is defined as the number of C-beta atoms in other residues within a sphere around the C-beta atom of the residue of interest. Contact number is partly conserved between protein folds and thus is useful for protein fold and structure prediction. In turn, each residue's contact number can be partially predicted from primary amino acid sequence, assisting tertiary fold analysis from sequence data. In this study, we provide a more accurate contact number prediction method from protein primary sequence. Results: We predict contact number from protein sequence using a novel support vector regression algorithm. Using protein local sequences with multiple sequence alignments (PSI-BLAST profiles), we demonstrate a correlation coefficient between predicted and observed contact numbers of 0.70, which outperforms previously achieved accuracies. Including additional information about sequence weight and amino acid composition further improves prediction accuracies significantly with the correlation coefficient reaching 0.73. If residues are classified as being either contacted or non-contacted, the prediction accuracies are all greater than 77%, regardless of the choice of classification thresholds. Conclusion: The successful application of support vector regression to the prediction of protein contact number reported here, together with previous applications of this approach to the prediction of protein accessible surface area and B-factor profile, suggests that a support vector regression approach may be very useful for determining the structure-function relation between primary sequence and higher order consecutive protein structural and functional properties.
Resumo:
The function of the prion protein gene (PRNP) and its normal product PrPC is elusive. We used comparative genomics as a strategy to understand the normal function of PRNP. As the reliability of comparisons increases with the number of species and increased evolutionary distance, we isolated and sequenced a 66.5 kb BAC containing the PRNP gene from a distantly related mammal, the model Australian marsupial Macropus eugenii (tammar wallaby). Marsupials are separated from eutherians such as human and mouse by roughly 180 million years of independent evolution. We found that tammar PRNP, like human PRNP, has two exons. Prion proteins encoded by the tammar wallaby and a distantly related marsupial, Monodelphis domestica (Brazilian opossum) PRNP contain proximal PrP repeats with a distinct, marsupial-specific composition and a variable number. Comparisons of tammar wallaby PRNP with PRNPs from human, mouse, bovine and ovine allowed us to identify non-coding gene regions conserved across the marsupial-eutherian evolutionary distance, which are candidates for regulatory regions. In the PRNP 3' UTR we found a conserved signal for nuclear-specific polyadenylation and the putative cytoplasmic polyadenylation element (CPE), indicating that post-transcriptional control of PRNP mRNA activity is important. Phylogenetic footprinting revealed conserved potential binding sites for the MZF-1 transcription factor in both upstream promoter and intron/intron 1, and for the MEF2, MyTI, Oct-1 and NFAT transcription factors in the intron(s). The presence of a conserved NFAT-binding site and CPE indicates involvement of PrPC in signal transduction and synaptic plasticity. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The Codex Alimentarius Commission of the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO) develops food standards, guidelines and related texts for protecting consumer health and ensuring fair trade practices globally. The major part of the world's population lives in more than 160 countries that are members of the Codex Alimentarius. The Codex Standard on Infant Formula was adopted in 1981 based on scientific knowledge available in the 1970s and is currently being revised. As part of this process, the Codex Committee on Nutrition and Foods for Special Dietary Uses asked the ESPGHAN Committee on Nutrition to initiate a consultation process with the international scientific community to provide a proposal on nutrient levels in infant formulae, based on scientific analysis and taking into account existing scientific reports on the subject. ESPGHAN accepted the request and, in collaboration with its sister societies in the Federation of International Societies on Pediatric Gastroenterology, Hepatology and Nutrition, invited highly qualified experts in the area of infant nutrition to form an International Expert Group (IEG) to review the issues raised. The group arrived at recommendations on the compositional requirements for a global infant formula standard which are reported here.
Resumo:
Milk obtained from cows on 2 subtropical dairy feeding systems were compared for their suitability for Cheddar cheese manufacture. Cheeses were made in a small-scale cheesemaking plant capable of making 2 blocks ( about 2 kg each) of Cheddar cheese concurrently. Its repeatability was tested over 10 separate cheesemaking days with no significant differences being found between the 2 vats in cheesemaking parameters or cheese characteristics. In the feeding trial, 16 pairs of Holstein - Friesian cows were used in 2 feeding systems (M1, rain-grown tropical grass pastures and oats; and M5, a feedlot, based on maize/barley silage and lucerne hay) over 2 seasons ( spring and autumn corresponding to early and late lactation, respectively). Total dry matter, crude protein (kg/cow. day) and metabolisable energy (MJ/cow.day) intakes were 17, 2.7, and 187 for M1 and 24, 4, 260 for M5, respectively. M5 cows produced higher milk yields and milk with higher protein and casein levels than the M1 cows, but the total solids and fat levels were similar (P > 0.05) for both M1 and M5 cows. The yield and yield efficiency of cheese produced from the 2 feeding systems were also not significantly different. The results suggest that intensive tropical pasture systems can produce milk suitable for Cheddar cheese manufacture when cows are supplemented with a high energy concentrate. Season and stage of lactation had a much greater effect than feeding system on milk and cheesemaking characteristics with autumn ( late lactation) milk having higher protein and fat contents and producing higher cheese yields.