254 resultados para Protein Arginine Methylation

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies with the myogenic basic helix-loop-helix and MADS box factors suggest that efficient transactivation is dependent on the recruitment of the steroid receptor coactivator (SRC) and the cofactors p300 and p300/CBP-associated factor. SRCs have been demonstrated to recruit CARM1 (coactivator-associated arginine methyltransferase-1), a member of the S-adenOSyl-L-methionine-dependent PRMTI-5 (protein-arginine N-methyltransferase-1-5) family, which catalyzes the methylation of arginine residues. This prompted us to investigate the functional role of CARM1/PRMT4 during skeletal myogenesis. We demonstrate that CARM1 and the SRC cofactor GRIP-1 cooperatively stimulate the activity of myocyte enhancer factor-2C (MEF2C). Moreover, there are direct interactions among MEF2C, GRIP-1, and CARM1. Chromatin immunoprecipitation demonstrated the in vivo recruitment of MEF2 and CARM1 to the endogenous muscle creatine kinase promoter in a differentiation-dependent manner. Furthermore, CARM1 is expressed in somites during embryogenesis and in the nuclei of muscle cells. Treatment of myogenic cells with the methylation inhibitor adenosine dialdehyde or tet-regulated CARM1 antisense expression did not affect expression of MyoD. However, inhibition of CARM1. inhibited differentiation and abrogated the expression of the key transcription factors (myogenin and MEF2) that initiate the differentiation cascade. This work clearly demonstrates that the arginine methyltransferase CARM1 potentiates myogenesis and supports the positive role of arginine methylation in mammalian differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterogeneous nuclear ribonucleoprotein (hnRNP) A2, a trans-acting factor that mediates intracellular trafficking of myelin basic protein (MBP) mRNA to the myelin compartment in oligodendrocytes, is most abundant in the nucleus, but shuttles between the nucleus and cytoplasm. In the cytoplasm, it is associated with granules that transport mRNA from the cell body to the processes of oligodendrocytes. We found that the overall level of hnRNP A2 increased in oligodendrocytes as they differentiated into MBIP-positive cells, and that this augmentation was reflected primarily in the cytoplasmic pool of hnRNP A2 present in the form of granules. The extranuclear distribution of hnRNP A2 was also observed in brain during the period of myelination in vivo. Methylation and phosphorylation have been implicated previously in the nuclear to cytoplasmic distribution of hnRNPs, so we used drugs that block methylation and phosphorylation of hnRNPs to assess their effect on hnRNP A2 distribution and mRNA trafficking. Cultures treated with adenosine dialdehyde (AdOx), an inhibitor of S-adenosyl-L-homocysteine hydrolase, or with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), a drug that inhibits casein kinase 2 (CK2), maintained the preferential nuclear distribution of hnRNP A2. Treatment with either drug affected the transport of RNA trafficking granules that remained confined to the cell body. (C) 2004 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective The syndrome of inappropriate secretion of antidiuretic hormone is a rare disorder in dogs characterised by hypo-osmolality and persistent arginine vasopressin production in the absence of hypovolaemia and/or hypotension. The study describes the efficacy and safety of the nonpeptide selective arginine vasopressin V-2 receptor antagonist OPC-31260 in a dog with the naturally occurring syndrome. Design The detailed case history of a dog with spontaneous syndrome of inappropriate secretion of antidiuretic hormone that received long-term therapy with oral OPC-31260 is presented. Effects of the first dose of OPC-31260 and of a dose administered after a continuous dosing period of 12 days are reported. Procedure Packed cell volume, plasma sodium, total protein, arginine vasopressin, renin activity, atrial natriuretic peptide, urine specific gravity, urine output, heart rate and body weight were monitored for 2 h before, and for 4 h after, the first dose of OPC-31260. The same parameters plus plasma osmolality and urine osmolality were monitored when an identical dose was administered after 12 days of therapy. Results Oral administration of OPC-31260 at 3 mg/kg body weight resulted in marked aquaresis with increased urine output and decline in urine specific gravity within 1 h. Corresponding increases in concentrations of plasma sodium, plasma osmolality and plasma renin activity were recorded over a 4 h period. Arginine vasopressin concentration remained inappropriately elevated throughout the study. Results were similar when the trial procedure was repeated after a stabilisation period of 12 days. Long-term therapy with OPC-31260 at a dose of 3 mg/kg body weight orally every 12 h resulted in good control of clinical signs with no deleterious effects detected during a 3-year follow-up period. Despite sustained clinical benefits observed in this case, plasma sodium did not normalise with continued administration of the drug. Conclusions Treatment of a dog with naturally occurring syndrome of inappropriate secretion of antidiuretic hormone with OPC-31260 at 3 mg/kg body weight orally every 12 h resulted in marked aquaresis and significant palliation of clinical signs with no discernible side-effects detected over a 3-year period. Thus, OPC-31260 appears to offer a feasible medical alternative to water restriction for treatment of dogs with syndrome of inappropriate secretion of antidiuretic hormone. Higher doses of OPC-31260 may be required to achieve and maintain normal plasma sodium in dogs with this syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within steroid receptor heterocomplexes the large tetraticopeptide repeat-containing immunophilins, cyclophilin 40 (CyP40), FKBP51, and FKBP52, target a common interaction site in heat shock protein 90 (HspSO) and act coordinately with HspSO to modulate receptor activity. The reversible nature of the interaction between the immunophilins and HspSO suggests that relative cellular abundance might be a key determinant of the immunophilin component within steroid receptor complexes. To investigate CyP40 gene regulation, we have isolated a fi-kilobase (kb) 5 ' -flanking region of the human gene and demonstrated that a similar to 50 base pair (bp) sequence adjacent to the transcription start site is essential for CyP40 basal expression. Three tandemly arranged Ets sites within this critical region were identified as binding elements for the multimeric Ets-related transcription factor, GA binding protein (GABP). Functional studies of this proximal promoter sequence, in combination with mutational analysis, confirmed these sites to be crucial for basal promoter function. Furthermore, overexpression of both GABP alpha and GABP beta subunits in Cos1 cells resulted in increased endogenous CyP40 mRNA levels. Significantly, a parallel increase in FKBP52 mRNA expression was not observed, highlighting an important difference in the mode of regulation of the CyP40 and FKBP52 genes. Our results identify GABP as a key regulator of CyP40 expression. GAFF is a common target of mitogen and stress-activated pathways and may integrate these diverse extracellular signals to regulate CyP40 gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fragile sites appear visually as nonstaining gaps on chromosomes that are inducible by specific cell culture conditions. Expansion of CGG/ CCG repeats has been shown to be the molecular basis of all five folate-sensitive fragile sites characterized molecularly so far, i.e., FRAXA, FRAXE, FRAXF, FRA11B, and FRA16A. In the present study we have refined the localization of the FRA10A folate-sensitive fragile site by fluorescence in situ hybridization. Sequence analysis of a BAC clone spanning FRA10A identified a single, imperfect, but polymorphic CGG repeat that is part of a CpG island in the 5'UTR of a novel gene named FRA10ACl. The number of CGG repeats varied in the population from 8 to 13. Expansions exceeding 200 repeat units were methylated in all FRA10A fragile site carriers tested. The FRA10ACl gene consists of 19 exons and is transcribed in the centromeric direction from the FRA10A repeat. The major transcript of similar to 1450 nt is ubiquitously expressed and codes for a highly conserved protein, FRA10ACl, of unknown function. Several splice variants leading to alternative 3' ends were identified (particularly in testis). These give rise to FRA10ACl proteins with altered COOH-termini. Immunofluorescence analysis of full-length, recombinant EGFP-tagged FRA10ACl protein showed that it was present exclusively in the nucleoplasm. We show that the expression of FRA10A, in parallel to the other cloned folate-sensitive fragile sites, is caused by an expansion and subsequent methylation of an unstable CGG trinucleotide repeat. Taking advantage of three cSNPs within the FRA10ACl gene we demonstrate that one allele of the gene is not transcribed in a FRA10A carrier. Our data also suggest that in the heterozygous state FRA10A is likely a benign folate-sensitive fragile site. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adenomas are the precursors of most colorectal cancers. Hyperplastic polyps have been linked to the subset of colorectal cancers showing DNA microsatellite instability, but little is known of their underlying genetic etiology. Using a strategy that isolates differentially methylated sequences from hyperplastic polyps and normal mucosa, we identified a 370-bp sequence containing the 5' untranslated region and the first exon of a gene that we have called HPP1. Rapid amplification of cDNA ends was used to isolate HPP1 from normal mucose. Using reverse transcription-PCR, HPP1 was expressed in 28 of 30 (93%) normal colonic samples but in only seven of 30 (23%) colorectal cancers (P < 0.001). The 5' region of HPP1 included a CpG island containing 49 CpG sites, of which 96% were found to be methylated by bisulfite sequencing of DNA from colonic tumor samples. By COBRA analysis, methylation was detected in six of nine (66%) adenomas, 17 of 27 (63%) hyperplastic polyps, and 46 of 55 (84%) colorectal cancers. There was an inverse relationship between methylation level and mRNA expression in cancers (r = -0.67; P < 0.001), and 5-aza-2-deoxycytidine treatment restored HPP1 expression in two colorectal cancer cell lines. In situ hybridization of HPP1 indicated that expression occurs in epithelial and stromal elements in normal mucosa but is silenced in both cell types in early colonic neoplasia. HPP1 is predicted to encode a transmembrane protein containing follistatin and epidermal growth factor-like domains. Silencing of HPP1 by methylation may increase the probability of neoplastic transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromosome 9p21, a locus comprising the tumor suppressor genes (TSG) p16(INK4) (a) and p14(ARF) , is a common region of loss of heterozygosity (LOH) in hepatocellular carcinoma (HCC). p14(ARF) shares exon 2 with p16 in a different reading frame. p14 binds to MDM2 resulting in a stabilization of functional p53 . This study examined the roles of p14, p16 and p53 in hepatocarcinogenesis, in 37 Australian and 24 South African patients. LOH at 9p21 and 17p13.1, p14 and p16 mutation analysis, p14 and p16 promoter methylation and p14, p16 and p53 protein expression was examined. LOH at 9p21 was detected more frequently in South African HCC (P = 0.04). Comparable rates of p53 LOH were observed in Australian and South African HCC (10/22, 45%vs 13/22, 59%, respectively). Hypermethylation of the p14 promoter was more prevalent in Australian HCC than in South African HCC (17/37, 46%vs 7/24, 29%, respectively). In Australian HCC the prevalence of p14 methylation increased with age (P = 0.03). p16 promoter methylation was observed in 12/37 (32%) and 6/24 (25%) in Australian and South African HCC, respectively. Loss of p16 protein expression was detected in 14/36 Australian HCC whereas p53 protein expression was detected in 9/36. Significantly, a reciprocal relationship between 9p21 LOH and p14 promoter hypermethylation was observed (P less than or equal to0.05 ). No significant association between p14 and p53 was seen in this study. The reciprocal relationship identified indicates different pathways of tumorigenesis and likely reflects different etiologies of HCC in the two countries. (C) 2002 Blackwell Science Asia Pty Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The albA gene from Klebsiella oxytoca encodes a protein that binds albicidin phytotoxins and antibiotics with high affinity. Previously, it has been shown that shifting pH from 6 to 4 reduces binding activity of AlbA by about 30%, indicating that histidine residues might be involved in substrate binding. In this study, molecular analysis of the albA coding region revealed sequence discrepancies with the albA sequence reported previously, which were probably due to sequencing errors. The albA gene was subsequently cloned from K oxytoca ATCC 13182(T) to establish the revised sequence. Biochemical and molecular approaches were used to determine the functional role of four histidine residues (His(78), HiS(125), HiS(141) and His(189)) in the corrected sequence for AlbA. Treatment of AlbA with diethyl pyrocarbonate (DEPC), a histidine-specific alkylating reagent, reduced binding activity by about 95%. DEPC treatment increased absorbance at 240-244 nm by an amount indicating conversion to N-carbethoxyhistidine of a single histidine residue per AlbA molecule. Pretreatment with albicidin protected AlbA against modification by DEPC, with a 1 : 1 molar ratio of albicidin to the protected histidine residues. Based on protein secondary structure and amino acid surface probability indices, it is predicted that HiS125 might be the residue required for albicidin binding. Mutation of HiS125 to either alanine or leucine resulted in about 32% loss of binding activity, and deletion of HiS125 totally abolished binding activity. Mutation of HiS125 to arginine and tyrosine had no effect. These results indicate that HiS125 plays a key role either in an electrostatic interaction between AlbA and albicidin or in the conformational dynamics of the albicidin-binding site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CYP2C9 is distinguished by a preference for substrates bearing a negative charge at physiological pH. Previous studies have suggested that CYP2C9 residues R97 and K72 may play roles in determining preference for anionic substrates by interaction at the active site or in the access channel. The aim of the present study was to assess the role of these two residues in determining substrate selectivity. R97 and K72 were substituted with negative, uncharged polar and hydrophobic residues using a degenerate polymerase chain reaction-directed strategy. Wild-type and mutant enzymes were expressed in bicistronic format with human cytochrome P450 reductase in Escherichia coli. Mutation of R97 led to a loss of holoenzyme expression for R97A, R97V, R97L, R97T, and R97E mutants. Low levels of hemoprotein were detected for R97Q, R97K, R97I, and R97P mutants. Significant apoenzyme was observed, suggesting that heme insertion or protein stability was compromised in R97 mutants. These observations are consistent with a structural role for R97 in addition to any role in substrate binding. By contrast, all K72 mutants examined (K72E, K72Q, K72V, and K72L) could be expressed as hemoprotein at levels comparable to wild-type. Type I binding spectra were obtained with wildtype and K72 mutants using diclofenac and ibuprofen. Mutation of K72 had little or no effect on the interaction with these substrates, arguing against a critical role in determining substrate specificity. Thus, neither residue appears to play a role in determining substrate specificity, but a structural role for R97 can be proposed consistent with recently published crystallographic data for CYP2C9 and CYP2C5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) is a novel intracellular protein with similar to 50% protein identity to adenosyl homocysteine hydrolase (AHCY), an important enzyme for metabolizing S-adenosyl-L-homocysteine, the by-product of S-adenosyl-L-homomethionine-dependent methylation. AHCYL1 binds to the inositol 1,4,5-trisphosphate receptor, suggesting that AHCYL1 is involved in intracellular calcium release. We identified two zebrafish AHCYL1 orthologs(zAHCYL1A and -B) by bioinformatics and reverse transcription-PCR. Unlike the ubiquitously present AHCY genes, AHCYL1 genes were only detected in segmented animals, and AHCYL1 proteins were highly conserved among species. Phylogenic analysis suggested that the AHCYL1 gene diverged early from AHCY and evolved independently. Quantitative reverse transcription-PCR showed that zAHCYL1A and -B mRNA expression was regulated differently from the other AHCY-like protein zAHCYL2 and zAHCY during zebrafish embryogenesis. Injection of morpholino antisense oligonucleotides against zAHCYL1A and -B into zebrafish embryos inhibited zAHCYL1A and -B mRNA translation specifically and induced ventralized morphologies. Conversely, human and zebrafish AHCYL1A mRNA injection into zebrafish embryos induced dorsalized morphologies that were similar to those obtained by depleting intracellular calcium with thapsigargin. Human AHCY mRNA injection showed little effect on the embryos. These data suggest that AHCYL1 has a different function from AHCY and plays an important role in embryogenesis by modulating inositol 1,4,5-trisphosphate receptor function for the intracellular calcium release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although IL-6 has been shown to predict onset of disability in older persons and both IL-6 and CRP are associated with motality risk, these markers of inflammation have only limited associations with physical performance, except for walking measures and grip strength at baseline, and do not predict change in performance 7 years later in a high-functioning subset of older adults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successful fertilization in free-spawning marine organisms depends on the interactions between genes expressed on the surfaces of eggs and sperm. Positive selection frequently characterizes the molecular evolution of such genes, raising the possibility that some common deterministic process drives the evolution of gamete recognition genes and may even be important for understanding the evolution of prezygotic isolation and speciation in the marine realm. One hypothesis is that gamete recognition genes are subject to selection for prezygotic isolation, namely reinforcement. In a previous study, positive selection on the gene coding for the acrosomal sperm protein M7 lysin was demonstrated among allopatric populations of mussels in the Mytilus edulis species group (M. edulis, M. galloprovincialis, and M. trossulus). Here, we expand sampling to include M7 lysin haplotypes from populations where mussel species are sympatric and hybridize to determine whether there is a pattern of reproductive character displacement, which would be consistent with reinforcement driving selection on this gene. We do not detect a strong pattern of reproductive character displacement; there are no unique haplotypes in sympatry nor is there consistently greater population structure in comparisons involving sympatric populations. One distinct group of haplotypes, however, is strongly affected by natural selection and this group of haplotypes is found within M. galloprovincialis populations throughout the Northern Hemisphere concurrent with haplotypes common to M. galloprovincialis and M. edulis. We suggest that balancing selection, perhaps resulting from sexual conflicts between sperm and eggs, maintains old allelic diversity within M. galloprovincialis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maternally inherited intracellular symbiont Wolbachia pipientis is well known for inducing a variety of reproductive abnormalities in the diverse arthropod hosts it infects. It has been implicated in causing cytoplasmic incompatibility, parthenogenesis, and the feminization of genetic males in different hosts. The molecular mechanisms by which this fastidious intracellular bacterium causes these reproductive and developmental abnormalities have not yet been determined. In this paper, we report on (i) the purification of one of the most abundantly expressed Wolbachia proteins from infected Drosophila eggs and (ii) the subsequent cloning and characterization of the gene (wsp) that encodes it. The functionality of the wsp promoter region was also successfully tested in Escherichia coli. Comparison of sequences of this gene from different strains of Wolbachia revealed a high level of variability. This sequence variation correlated with the ability of certain Wolbachia strains to induce or rescue the cytoplasmic incompatibility phenotype in infected insects. As such, this gene will be a very useful tool for Wolbachia strain typing and phylogenetic analysis, as well as understanding the molecular basis of the interaction of Wolbachia with its host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intracellular Wolbachia infections are extremely common in arthropods and exert profound control over the reproductive biology of the host. However, very little is known about the underlying molecular mechanisms which mediate these interactions with the host. We examined protein synthesis by Wolbachia in a Drosophila host in vivo by selective metabolic labelling of prokaryotic proteins and subsequent analysis by 1D and 2D gel electrophoresis. Using this method we could identify the major proteins synthesized by Wolbachia in ovaries and testes of flies. Of these proteins the most abundant was of low molecular weight and showed size variation between Wolbachia strains which correlated with the reproductive phenotype they generated in flies. Using the gel systems we employed it was not possible to identify any proteins of Wolbachia origin in the mature sperm cells of infected flies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine invertebrate sperm proteins are particularly interesting because they are characterized by positive selection and are likely to be involved in prezyogotic isolation and, thus, speciation. Here, we present the first survey of inter and intraspecific variation of a bivalve sperm protein among a group of species that regularly hybridize in nature. M7 lysin is found in sperm acrosomes of mussels and dissolves the egg vitelline coat, permitting fertilization. We sequenced multiple alleles of the mature protein-coding region of M7 lysin from allopatric populations of mussels in the Mytilus edulis species group (M. edulis, M. galloprovincialis, and M. trossulus). A significant McDonald-Kreitman test showed an excess of fixed amino acid replacing substitutions between species, consistent with positive selection. In addition, Kolmogorov-Smirnov tests showed significant heterogeneity in polymorphism to divergence ratios for both synonymous variation and combined synonymous and non-synonymous variation within M. galloprovincialis. These results indicate that there has been adaptive evolution at M7 lysin and, furthermore, shows that positive selection on sperm proteins can occur even when post-zygotic reproductive isolation is incomplete.