9 resultados para Prosthesis
em University of Queensland eSpace - Australia
Resumo:
Conclusion. The new Provox(R) NID (TM) non- indwelling voice prosthesis investigated in this study provides a good option for laryngectomized patients using non- indwelling voice prostheses and can potentially improve safety and increase patients' satisfaction with their voice and speech. Objective. To investigate the feasibility of and patient satisfaction with the Provox NID non- indwelling voice prosthesis. Material and methods. Pre- and post- study questionnaires were used to evaluate the patients' former voice prosthesis and the Provox NID voice prosthesis. In addition, measurements of pull- out force, maximum phonation time and loudness were made for both voice prostheses. In vitro measurements of airflow characteristics were also made. Following a 6- week trial, all patients provided feedback on the new voice prosthesis and the results were used to further improve the Provox NID. This final version of the new voice prosthesis was subsequently trialled and evaluated by 10 patients 6 months later. Results. Overall results showed that patient satisfaction with the Provox NID non- indwelling voice prosthesis was favourable. The pull- out force for the new prosthesis was significantly higher than that for the formerly used prosthesis and its aerodynamic characteristics were better.
Resumo:
Ultra wideband (UWB) radar has been extensively investigated both theoretically and practically for the identification buried artifacts. Ground probe radar (GPR) concentrates on the identification of lightly buried land mines, unexploded ordnance (UXO) and archeological targets. The same technology is proposed in a similar context for the rapid identification of in vivo implanted metallic prostheses. The technique is based on resonance based target identification and the paper investigates UWB scattering from a metallic hip prosthesis in free space as a first step in the identification process.
Resumo:
Coronary and peripheral artery bypass grafting is commonly used to relieve the symptoms of vascular deficiencies, but the Supply Of autologous artery or vein may not be sufficient or suitable for multiple bypass or repeat procedures, necessitating the use of other materials. Synthetic materials are suitable for large bore arteries but often thrombose when used in smaller arteries. Suitable replacement grafts must have appropriate characteristics, including resistance to infection, low immunogenicity and good biocompatability and thromboresistance, with appropriate mechanical and physiological properties and cheap and fast manufacture. Current avenues of graft development include coating synthetic grafts with either biological chemicals or cells with anticoagulatory properties. Matrix templates or acellular tubes of extracellular matrix (such as collagen) may be coated or infiltrated with cultured cells. Once placed into the artery, these grafts may become colonised by host cells and gain many of the properties of normal artery. Tissue-engineered blood vessels may also be formed from layers of human vascular cells grown in culture. These engineered vessels have many of the characteristics of arteries formed in vivo. Artificial arteries may be also be derived from peritoneal granulation tissue in body bioreactors by adapting the body's natural wound healing response to produce a hollow tube. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
The long-term biostability of a novel thermoplastic polyurethane elastomer (Elast-Eon(TM) 2 80A) synthesized using poly(hexamethylene oxide) (PHMO) and poly(dimethylsiloxane) (PDMS) macrodiols has been studied using an in vivo ovine model. The material's biostability was compared with that of three commercially available control materials, Pellethane(R) 2363-80A, Pellethane(R) 2363-55D and Bionate(R) 55D, after subcutaneous implantation of strained compression moulded flat sheet dumbbells in sheep for periods ranging from 3 to 24 months. Scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to assess changes in the surface chemical structure and morphology of the materials. Gel permeation chromatography, differential scanning calorimetry and tensile testing were used to examine changes in bulk characteristics of the materials. The results showed that the biostability of the soft flexible PDMS-based test polyurethane was significantly better than the control material of similar softness, Pellethane(R) 80A, and as good as or better than both of the harder commercially available negative control polyurethanes. Pellethane(R) 55D and Bionate(R) 55D. Changes observed in the surface of the Pellethane(R) materials were consistent with oxidation of the aliphatic polyether soft segment and hydrolysis of the urethane bonds joining hard to soft segment with degradation in Pellethane(R) 80A significantly more severe than that observed in Pellethane(R) 55D. Very minor changes were seen on the surfaces of the Elast-Eon(TM) 2 80A and Bionate(R) 55D materials. There was a general trend of molecular weight decreasing with time across all polymers and the molecular weights of all materials decreased at a similar relative rate. The polydispersity ratio, M-w/M-n, increased with time for all materials. Tensile tests indicated that UTS increased in Elast-Eon(TM) 2 80A and Bionate(R) 55D following implantation under strained conditions. However, ultimate strain decreased and elastic modulus increased in the explanted specimens of all three materials when compared with their unimplanted unstrained counterparts. The results indicate that a soft, flexible PDMS-based polyurethane synthesized using 20% PHMO and 80% PDMS macrodiols has excellent long-term biostability compared with commercially available polyurethanes. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
After a total knee replacement, inadequate rehabilitation is associated with poor physical outcomes and a reduced longevity of the knee prosthesis. We have developed a low-bandwidth telemedicine system to enable rehabilitation services to be delivered directly to the home of patients in rural and remote areas. We have examined the experience of clinical physiotherapists and of 31 participants who received treatment via the system. High levels of satisfaction were reported by participants (mean responses >7 on a 10 cm visual analogue scale). The service was found to be effective, safe and easy to use, and it integrated well into current clinical practice. The study demonstrates the potential for delivering physiotherapy services via low-bandwidth Internet connections.
Resumo:
We evaluated the hydrodynamic performance of kangaroo aortic valve matrices (KMs) (19, 21, and 23 mm), as potential scaffolds in tissue valve engineering using a pulsatile left heart model at low and high cardiac outputs (COs) and heart rates (HRs) of 60 and 90 beats/min. Data were measured in two samples of each type, pooled in two CO levels (2.1 +/- 0.7 and 4.2 +/- 0.6 L/min; mean +/- standard errors on the mean), and analyzed using analysis of variance with CO level, HR, and valve type as fixed factors and compared to similar porcine matrices (PMs). Transvalvular pressure gradient (Delta P) was a function of HR (P < 0.001) and CO (P < 0.001) but not of valve type (P = 0.39). Delta P was consistently lower in KMs but not significantly different from PMs. The effective orifice area and performance index of kangaroo matrices was statistically larger for all sizes at both COs and HRs.
Resumo:
A 52-year-old male with idiopathic hypereosinophilic syndrome (HES) was transferred to our institution following the development of acute respiratory failure and shock. He had previously undergone tricuspid valve replacement with bioprosthetic valves on two occasions: the initial surgery for severe native tricuspid valve stenosis and the redo surgery for severe prosthetic valve stenosis and regurgitation. Conventional imaging assessment using transoesophageal echocardiography was suboptimal and comprehensive assessment of prosthetic valve function was aided by the use of intracardiac echocardiography (ICE). ICE provided high quality 2D imaging of the prosthesis demonstrating thrombus-like material coating the inner surfaces of the prosthetic valve stents effectively forming a tunnel-like obstruction. Unusual hemodynamics secondary to severe tricuspid stenosis were demonstrated by CW Doppler with intermittent signal fusion resulting from blunted respiratory variation in the markedly elevated right atrial pressure relative to right ventricular pressure. Successful balloon valvuloplasty was performed with ICE proving highly valuable in guiding balloon position as well as monitoring the efficacy of the subsequent inflations.