152 resultados para Progressive Asymptotic Approach
em University of Queensland eSpace - Australia
Resumo:
In this paper, a progressive asymptotic approach procedure is presented for solving the steady-state Horton-Rogers-Lapwood problem in a fluid-saturated porous medium. The Horton-Rogers-Lapwood problem possesses a bifurcation and, therefore, makes the direct use of conventional finite element methods difficult. Even if the Rayleigh number is high enough to drive the occurrence of natural convection in a fluid-saturated porous medium, the conventional methods will often produce a trivial non-convective solution. This difficulty can be overcome using the progressive asymptotic approach procedure associated with the finite element method. The method considers a series of modified Horton-Rogers-Lapwood problems in which gravity is assumed to tilt a small angle away from vertical. The main idea behind the progressive asymptotic approach procedure is that through solving a sequence of such modified problems with decreasing tilt, an accurate non-zero velocity solution to the Horton-Rogers-Lapwood problem can be obtained. This solution provides a very good initial prediction for the solution to the original Horton-Rogers-Lapwood problem so that the non-zero velocity solution can be successfully obtained when the tilted angle is set to zero. Comparison of numerical solutions with analytical ones to a benchmark problem of any rectangular geometry has demonstrated the usefulness of the present progressive asymptotic approach procedure. Finally, the procedure has been used to investigate the effect of basin shapes on natural convection of pore-fluid in a porous medium. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
We present a numerical methodology for the study of convective pore-fluid, thermal and mass flow in fluid-saturated porous rock basins. lit particular, we investigate the occurrence and distribution pattern of temperature gradient driven convective pore-fluid flow and hydrocarbon transport in the Australian North West Shelf basin. The related numerical results have demonstrated that: (1) The finite element method combined with the progressive asymptotic approach procedure is a useful tool for dealing with temperature gradient driven pore-fluid flow and mass transport in fluid-saturated hydrothermal basins; (2) Convective pore-fluid flow generally becomes focused in more permeable layers, especially when the layers are thick enough to accommodate the appropriate convective cells; (3) Large dislocation of strata has a significant influence off the distribution patterns of convective pore;fluid flow, thermal flow and hydrocarbon transport in the North West Shelf basin; (4) As a direct consequence of the formation of convective pore-fluid cells, the hydrocarbon concentration is highly localized in the range bounded by two major faults in the basin.
Theoretical and numerical analyses of convective instability in porous media with upward throughflow
Resumo:
Exact analytical solutions have been obtained for a hydrothermal system consisting of a horizontal porous layer with upward throughflow. The boundary conditions considered are constant temperature, constant pressure at the top, and constant vertical temperature gradient, constant Darcy velocity at the bottom of the layer. After deriving the exact analytical solutions, we examine the stability of the solutions using linear stability theory and the Galerkin method. It has been found that the exact solutions for such a hydrothermal system become unstable when the Rayleigh number of the system is equal to or greater than the corresponding critical Rayleigh number. For small and moderate Peclet numbers (Pe less than or equal to 6), an increase in upward throughflow destabilizes the convective flow in the horizontal layer. To confirm these findings, the finite element method with the progressive asymptotic approach procedure is used to compute the convective cells in such a hydrothermal system. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
We use the finite element method to model three-dimensional convective pore-fluid flow in fluid-saturated porous media when they are heated from below. In particular, we employ the particle-tracking technique to mimic the trajectories of particles in three-dimensional fluid flow problems. The related numerical results demonstrated that: (1) The progressive asymptotic approach procedure, which was previously developed for the finite element modelling of two-dimensional convective pore-fluid flow problems, is equally applicable to the finite element modelling of three-dimensional convective pore-fluid flow in fluid-saturated porous media heated from below. (2) The perturbation of gravity at different planes has a significant effect on the pattern of three-dimensional convective pore-fluid flow and therefore, may influence the pattern of orebody formation and mineralization in three-dimensional hydrothermal systems. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
This study is part of a larger project on the measurement of effective health consumers in the context of musculoskeletal illness. This complex issue involves the progressive nature of the disease, invisibility of the illness and attendant impairments, complexity of decision-making and negotiation, and urgent need to translate emergent evidence about treatment and management to patients and health professionals. We conducted indepth interviews with patients, family members, general practitioners, specialist clinicians, and health consumer advocates (N = 84) about effective consumers in this context, using a process of convergent interviewing, with convergence conducted within and across groups and countries. The initial set of themes included information seeking and adaptation, decision-making, roles of patients, GPs, and specialists and communication between them, importance of pain and impact of depression, impact of the social environment (including the invisibility of the disease and the need for a normal life), and coping strategies.
Resumo:
All muscle contractions are dependent on the functioning of motor units. In diseases such as amyotrophic lateral sclerosis (ALS), progressive loss of motor units leads to gradual paralysis. A major difficulty in the search for a treatment for these diseases has been the lack of a reliable measure of disease progression. One possible measure would be an estimate of the number of surviving motor units. Despite over 30 years of motor unit number estimation (MUNE), all proposed methods have been met with practical and theoretical objections. Our aim is to develop a method of MUNE that overcomes these objections. We record the compound muscle action potential (CMAP) from a selected muscle in response to a graded electrical stimulation applied to the nerve. As the stimulus increases, the threshold of each motor unit is exceeded, and the size of the CMAP increases until a maximum response is obtained. However, the threshold potential required to excite an axon is not a precise value but fluctuates over a small range leading to probabilistic activation of motor units in response to a given stimulus. When the threshold ranges of motor units overlap, there may be alternation where the number of motor units that fire in response to the stimulus is variable. This means that increments in the value of the CMAP correspond to the firing of different combinations of motor units. At a fixed stimulus, variability in the CMAP, measured as variance, can be used to conduct MUNE using the "statistical" or the "Poisson" method. However, this method relies on the assumptions that the numbers of motor units that are firing probabilistically have the Poisson distribution and that all single motor unit action potentials (MUAP) have a fixed and identical size. These assumptions are not necessarily correct. We propose to develop a Bayesian statistical methodology to analyze electrophysiological data to provide an estimate of motor unit numbers. Our method of MUNE incorporates the variability of the threshold, the variability between and within single MUAPs, and baseline variability. Our model not only gives the most probable number of motor units but also provides information about both the population of units and individual units. We use Markov chain Monte Carlo to obtain information about the characteristics of individual motor units and about the population of motor units and the Bayesian information criterion for MUNE. We test our method of MUNE on three subjects. Our method provides a reproducible estimate for a patient with stable but severe ALS. In a serial study, we demonstrate a decline in the number of motor unit numbers with a patient with rapidly advancing disease. Finally, with our last patient, we show that our method has the capacity to estimate a larger number of motor units.
Resumo:
Looking uphill towards house from road.
Resumo:
Genetic recombination can produce heterogeneous phylogenetic histories within a set of homologous genes. Delineating recombination events is important in the study of molecular evolution, as inference of such events provides a clearer picture of the phylogenetic relationships among different gene sequences or genomes. Nevertheless, detecting recombination events can be a daunting task, as the performance of different recombination-detecting approaches can vary, depending on evolutionary events that take place after recombination. We recently evaluated the effects of post-recombination events on the prediction accuracy of recombination-detecting approaches using simulated nucleotide sequence data. The main conclusion, supported by other studies, is that one should not depend on a single method when searching for recombination events. In this paper, we introduce a two-phase strategy, applying three statistical measures to detect the occurrence of recombination events, and a Bayesian phylogenetic approach in delineating breakpoints of such events in nucleotide sequences. We evaluate the performance of these approaches using simulated data, and demonstrate the applicability of this strategy to empirical data. The two-phase strategy proves to be time-efficient when applied to large datasets, and yields high-confidence results.
Resumo:
Diachronic approaches provide potential for a more sophisticated framework within which to examine change in Neanderthal behavioural complexity using archaeological proxies such as symbolic artefacts, faunal assemblages and technology. Analysis of the temporal appearance and distribution of such artefacts and assemblages provide the basis for identifying changes in Neanderthal behavioural complexity in terms of symbolism, faunal extraction and technology respectively. Although changes in technology and faunal extraction were examined in the wider study, only the results of the symbolic study are presented below to illustrate the potential of the approach.
Resumo:
Transient response of a CSTR containing porous catalyst pellets is analyzed theoretically using a matched asymptotic expansion technique. This singular perturbation technique leads directly to the conditions under which the minima of reservoir concentration occur. The existence of the minima may be used to estimate some inherent parameters of the catalyst pellet.
Resumo:
Globalisation, increasing complexity, and the need to address triple-bottom line sustainability has seen the proliferation of Learning Organisations (LO) who, by definition, have the capacity to anticipate environmental changes and economic opportunities and adapt accordingly. Such organisations use system dynamics modelling (SDM) for both strategic planning and the promotion of organisational learning. Although SDM has been applied in the context of tourism destination management for predictive reasons, the current literature does not analyse or recognise how this could be used as a foundation for an LO. This study introduces the concept of the Learning Tourism Destinations (LTD) and discusses, on the basis of a review of 6 case studies, the potential of SDM as a tool for the implementation and enhancement of collective learning processes. The results reveal that SDM is capable of promoting communication between stakeholders and stimulating organisational learning. It is suggested that the LTD approach be further utilised and explored.
Resumo:
A major challenge in successfully implementing transit-oriented development (TOD) is having a robust process that ensures effective appraisal, initiation and delivery of multi-stakeholder TOD projects. A step-by step project development process can assist in the methodic design, evaluation, and initiation of TOD projects. Successful TOD requires attention to transit, mixed-use development and public space. Brisbane, Australia provides a case-study where recent planning policies and infrastructure documents have laid a foundation for TOD, but where barriers lie in precinct level planning and project implementation. In this context and perhaps in others, the research effort needs to shift toward identification of appropriate project processes and strategies. This paper presents the outcomes of research conducted to date. Drawing on the mainstream approach to project development and financial evaluation for property projects, key steps for potential use in successful delivery of TOD projects have been identified, including: establish the framework; location selection; precinct context review; preliminary precinct design; the initial financial viability study; the decision stage; establishment of project structure; land acquisition; development application; and project delivery. The appropriateness of this mainstream development and appraisal process will be tested through stakeholder research, and the proposed process will then be refined for adoption in TOD projects. It is suggested that the criteria for successful TOD should be broadened beyond financial concerns in order to deliver public sector support for project initiation.