4 resultados para Program Compilation

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

High-level language program compilation strategies can be proven correct by modelling the process as a series of refinement steps from source code to a machine-level description. We show how this can be done for programs containing recursively-defined procedures in the well-established predicate transformer semantics for refinement. To do so the formalism is extended with an abstraction of the way stack frames are created at run time for procedure parameters and variables.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Processor emulators are a software tool for allowing legacy computer programs to be executed on a modern processor. In the past emulators have been used in trivial applications such as maintenance of video games. Now, however, processor emulation is being applied to safety-critical control systems, including military avionics. These applications demand utmost guarantees of correctness, but no verification techniques exist for proving that an emulated system preserves the original system’s functional and timing properties. Here we show how this can be done by combining concepts previously used for reasoning about real-time program compilation, coupled with an understanding of the new and old software architectures. In particular, we show how both the old and new systems can be given a common semantics, thus allowing their behaviours to be compared directly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous work on formally modelling and analysing program compilation has shown the need for a simple and expressive semantics for assembler level programs. Assembler programs contain unstructured jumps and previous formalisms have modelled these by using continuations, or by embedding the program in an explicit emulator. We propose a simpler approach, which uses techniques from compiler theory in a formal setting. This approach is based on an interpretation of programs as collections of program paths, each of which has a weakest liberal precondition semantics. We then demonstrate, by example, how we can use this formalism to justify the compilation of block-structured high-level language programs into assembler.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we extend the conventional framework of program refinement down to the assembler level. We describe an extension to the Refinement Calculus that supports the refinement of programs in the Guarded Command Language to programs in .NET assembler. This is illustrated by a small example.