21 resultados para Processing wikipedia data
em University of Queensland eSpace - Australia
Resumo:
Three-dimensional (3D) synthetic aperture radar (SAR) imaging via multiple-pass processing is an extension of interferometric SAR imaging. It exploits more than two flight passes to achieve a desired resolution in elevation. In this paper, a novel approach is developed to reconstruct a 3D space-borne SAR image with multiple-pass processing. It involves image registration, phase correction and elevational imaging. An image model matching is developed for multiple image registration, an eigenvector method is proposed for the phase correction and the elevational imaging is conducted using a Fourier transform or a super-resolution method for enhancement of elevational resolution. 3D SAR images are obtained by processing simulated data and real data from the first European Remote Sensing satellite (ERS-1) with the proposed approaches.
Resumo:
A complete workflow specification requires careful integration of many different process characteristics. Decisions must be made as to the definitions of individual activities, their scope, the order of execution that maintains the overall business process logic, the rules governing the discipline of work list scheduling to performers, identification of time constraints and more. The goal of this paper is to address an important issue in workflows modelling and specification, which is data flow, its modelling, specification and validation. Researchers have neglected this dimension of process analysis for some time, mainly focussing on structural considerations with limited verification checks. In this paper, we identify and justify the importance of data modelling in overall workflows specification and verification. We illustrate and define several potential data flow problems that, if not detected prior to workflow deployment may prevent the process from correct execution, execute process on inconsistent data or even lead to process suspension. A discussion on essential requirements of the workflow data model in order to support data validation is also given..
Resumo:
We present an application of Mathematical Morphology (MM) for the classification of astronomical objects, both for star/galaxy differentiation and galaxy morphology classification. We demonstrate that, for CCD images, 99.3 +/- 3.8% of galaxies can be separated from stars using MM, with 19.4 +/- 7.9% of the stars being misclassified. We demonstrate that, for photographic plate images, the number of galaxies correctly separated from the stars can be increased using our MM diffraction spike tool, which allows 51.0 +/- 6.0% of the high-brightness galaxies that are inseparable in current techniques to be correctly classified, with only 1.4 +/- 0.5% of the high-brightness stars contaminating the population. We demonstrate that elliptical (E) and late-type spiral (Sc-Sd) galaxies can be classified using MM with an accuracy of 91.4 +/- 7.8%. It is a method involving fewer 'free parameters' than current techniques, especially automated machine learning algorithms. The limitation of MM galaxy morphology classification based on seeing and distance is also presented. We examine various star/galaxy differentiation and galaxy morphology classification techniques commonly used today, and show that our MM techniques compare very favourably.
Resumo:
The cost of spatial join processing can be very high because of the large sizes of spatial objects and the computation-intensive spatial operations. While parallel processing seems a natural solution to this problem, it is not clear how spatial data can be partitioned for this purpose. Various spatial data partitioning methods are examined in this paper. A framework combining the data-partitioning techniques used by most parallel join algorithms in relational databases and the filter-and-refine strategy for spatial operation processing is proposed for parallel spatial join processing. Object duplication caused by multi-assignment in spatial data partitioning can result in extra CPU cost as well as extra communication cost. We find that the key to overcome this problem is to preserve spatial locality in task decomposition. We show in this paper that a near-optimal speedup can be achieved for parallel spatial join processing using our new algorithms.
Resumo:
Quantile computation has many applications including data mining and financial data analysis. It has been shown that an is an element of-approximate summary can be maintained so that, given a quantile query d (phi, is an element of), the data item at rank [phi N] may be approximately obtained within the rank error precision is an element of N over all N data items in a data stream or in a sliding window. However, scalable online processing of massive continuous quantile queries with different phi and is an element of poses a new challenge because the summary is continuously updated with new arrivals of data items. In this paper, first we aim to dramatically reduce the number of distinct query results by grouping a set of different queries into a cluster so that they can be processed virtually as a single query while the precision requirements from users can be retained. Second, we aim to minimize the total query processing costs. Efficient algorithms are developed to minimize the total number of times for reprocessing clusters and to produce the minimum number of clusters, respectively. The techniques are extended to maintain near-optimal clustering when queries are registered and removed in an arbitrary fashion against whole data streams or sliding windows. In addition to theoretical analysis, our performance study indicates that the proposed techniques are indeed scalable with respect to the number of input queries as well as the number of items and the item arrival rate in a data stream.
Resumo:
A progressive spatial query retrieves spatial data based on previous queries (e.g., to fetch data in a more restricted area with higher resolution). A direct query, on the other side, is defined as an isolated window query. A multi-resolution spatial database system should support both progressive queries and traditional direct queries. It is conceptually challenging to support both types of query at the same time, as direct queries favour location-based data clustering, whereas progressive queries require fragmented data clustered by resolutions. Two new scaleless data structures are proposed in this paper. Experimental results using both synthetic and real world datasets demonstrate that the query processing time based on the new multiresolution approaches is comparable and often better than multi-representation data structures for both types of queries.
Resumo:
Non-technical losses (NTL) identification and prediction are important tasks for many utilities. Data from customer information system (CIS) can be used for NTL analysis. However, in order to accurately and efficiently perform NTL analysis, the original data from CIS need to be pre-processed before any detailed NTL analysis can be carried out. In this paper, we propose a feature selection based method for CIS data pre-processing in order to extract the most relevant information for further analysis such as clustering and classifications. By removing irrelevant and redundant features, feature selection is an essential step in data mining process in finding optimal subset of features to improve the quality of result by giving faster time processing, higher accuracy and simpler results with fewer features. Detailed feature selection analysis is presented in the paper. Both time-domain and load shape data are compared based on the accuracy, consistency and statistical dependencies between features.
Resumo:
Traditionally the basal ganglia have been implicated in motor behavior, as they are involved in both the execution of automatic actions and the modification of ongoing actions in novel contexts. Corresponding to cognition, the role of the basal ganglia has not been defined as explicitly. Relative to linguistic processes, contemporary theories of subcortical participation in language have endorsed a role for the globus pallidus internus (GPi) in the control of lexical-semantic operations. However, attempts to empirically validate these postulates have been largely limited to neuropsychological investigations of verbal fluency abilities subsequent to pallidotomy. We evaluated the impact of bilateral posteroventral pallidotomy (BPVP) on language function across a range of general and high-level linguistic abilities, and validated/extended working theories of pallidal participation in language. Comprehensive linguistic profiles were compiled up to 1 month before and 3 months after BPVP in 6 subjects with Parkinson's disease (PD). Commensurate linguistic profiles were also gathered over a 3-month period for a nonsurgical control cohort of 16 subjects with PD and a group of 16 non-neurologically impaired controls (NC). Nonparametric between-groups comparisons were conducted and reliable change indices calculated, relative to baseline/3-month follow-up difference scores. Group-wise statistical comparisons between the three groups failed to reveal significant postoperative changes in language performance. Case-by-case data analysis relative to clinically consequential change indices revealed reliable alterations in performance across several language variables as a consequence of BPVP. These findings lend support to models of subcortical participation in language, which promote a role for the GPi in lexical-semantic manipulation mechanisms. Concomitant improvements and decrements in postoperative performance were interpreted within the context of additive and subtractive postlesional effects. Relative to parkinsonian cohorts, clinically reliable versus statistically significant changes on a case by case basis may provide the most accurate method of characterizing the way in which pathophysiologically divergent basal ganglia linguistic circuits respond to BPVP.
Resumo:
The use of computational fluid dynamics simulations for calibrating a flush air data system is described, In particular, the flush air data system of the HYFLEX hypersonic vehicle is used as a case study. The HYFLEX air data system consists of nine pressure ports located flush with the vehicle nose surface, connected to onboard pressure transducers, After appropriate processing, surface pressure measurements can he converted into useful air data parameters. The processing algorithm requires an accurate pressure model, which relates air data parameters to the measured pressures. In the past, such pressure models have been calibrated using combinations of flight data, ground-based experimental results, and numerical simulation. We perform a calibration of the HYFLEX flush air data system using computational fluid dynamics simulations exclusively, The simulations are used to build an empirical pressure model that accurately describes the HYFLEX nose pressure distribution ol cr a range of flight conditions. We believe that computational fluid dynamics provides a quick and inexpensive way to calibrate the air data system and is applicable to a broad range of flight conditions, When tested with HYFLEX flight data, the calibrated system is found to work well. It predicts vehicle angle of attack and angle of sideslip to accuracy levels that generally satisfy flight control requirements. Dynamic pressure is predicted to within the resolution of the onboard inertial measurement unit. We find that wind-tunnel experiments and flight data are not necessary to accurately calibrate the HYFLEX flush air data system for hypersonic flight.
Resumo:
Urbanization and the ability to manage for a sustainable future present numerous challenges for geographers and planners in metropolitan regions. Remotely sensed data are inherently suited to provide information on urban land cover characteristics, and their change over time, at various spatial and temporal scales. Data models for establishing the range of urban land cover types and their biophysical composition (vegetation, soil, and impervious surfaces) are integrated to provide a hierarchical approach to classifying land cover within urban environments. These data also provide an essential component for current simulation models of urban growth patterns, as both calibration and validation data. The first stages of the approach have been applied to examine urban growth between 1988 and 1995 for a rapidly developing area in southeast Queensland, Australia. Landsat Thematic Mapper image data provided accurate (83% adjusted overall accuracy) classification of broad land cover types and their change over time. The combination of commonly available remotely sensed data, image processing methods, and emerging urban growth models highlights an important application for current and next generation moderate spatial resolution image data in studies of urban environments.
Resumo:
Intelligence (IQ) can be seen as the efficiency of mental processes or cognition, as can basic information processing (IP) tasks like those used in our ongoing Memory, Attention and Problem Solving (MAPS) study. Measures of IQ and IP are correlated and both have a genetic component, so we are studying how the genetic variance in IQ is related to the genetic variance in IP. We measured intelligence with five subscales of the Multidimensional Aptitude Battery (MAB). The IP tasks included four variants of choice reaction time (CRT) and a visual inspection time (IT). The influence of genetic factors on the variances in each of the IQ, IP, and IT tasks was investigated in 250 identical and nonidentical twin pairs aged 16 years. For a subset of 50 pairs we have test–retest data that allow us to estimate the stability of the measures. MX was used for a multivariate genetic analysis that addresses whether the variance in IQ and IP measures is possibly mediated by common genetic factors. Analyses that show the modeled genetic and environmental influences on these measures of cognitive efficiency will be presented and their relevance to ideas on intelligence will be discussed.
Resumo:
The compound eyes of mantis shrimps, a group of tropical marine crustaceans, incorporate principles of serial and parallel processing of visual information that may be applicable to artificial imaging systems. Their eyes include numerous specializations for analysis of the spectral and polarizational properties of light, and include more photoreceptor classes for analysis of ultraviolet light, color, and polarization than occur in any other known visual system. This is possible because receptors in different regions of the eye are anatomically diverse and incorporate unusual structural features, such as spectral filters, not seen in other compound eyes. Unlike eyes of most other animals, eyes of mantis shrimps must move to acquire some types of visual information and to integrate color and polarization with spatial vision. Information leaving the retina appears to be processed into numerous parallel data streams leading into the central nervous system, greatly reducing the analytical requirements at higher levels. Many of these unusual features of mantis shrimp vision may inspire new sensor designs for machine vision
Resumo:
With the advent of functional neuroimaging techniques, in particular functional magnetic resonance imaging (fMRI), we have gained greater insight into the neural correlates of visuospatial function. However, it may not always be easy to identify the cerebral regions most specifically associated with performance on a given task. One approach is to examine the quantitative relationships between regional activation and behavioral performance measures. In the present study, we investigated the functional neuroanatomy of two different visuospatial processing tasks, judgement of line orientation and mental rotation. Twenty-four normal participants were scanned with fMRI using blocked periodic designs for experimental task presentation. Accuracy and reaction time (RT) to each trial of both activation and baseline conditions in each experiment was recorded. Both experiments activated dorsal and ventral visual cortical areas as well as dorsolateral prefrontal cortex. More regionally specific associations with task performance were identified by estimating the association between (sinusoidal) power of functional response and mean RT to the activation condition; a permutation test based on spatial statistics was used for inference. There was significant behavioral-physiological association in right ventral extrastriate cortex for the line orientation task and in bilateral (predominantly right) superior parietal lobule for the mental rotation task. Comparable associations were not found between power of response and RT to the baseline conditions of the tasks. These data suggest that one region in a neurocognitive network may be most strongly associated with behavioral performance and this may be regarded as the computationally least efficient or rate-limiting node of the network.
Resumo:
Antigen recognition by cytotoxic CD8 T cells is dependent upon a number of critical steps in MHC class I antigen processing including proteosomal cleavage, TAP transport into the endoplasmic reticulum, and MHC class 1 binding. Based on extensive experimental data relating to each of these steps there is now the capacity to model individual antigen processing steps with a high degree of accuracy. This paper demonstrates the potential to bring together models of individual antigen processing steps, for example proteosome cleavage, TAP transport, and MHC binding, to build highly informative models of functional pathways. In particular, we demonstrate how an artificial neural network model of TAP transport was used to mine a HLA-binding database so as to identify H LA-binding peptides transported by TAP. This integrated model of antigen processing provided the unique insight that HLA class I alleles apparently constitute two separate classes: those that are TAP-efficient for peptide loading (HLA-B27, -A3, and -A24) and those that are TAP-inefficient (HLA-A2, -B7, and -B8). Hence, using this integrated model we were able to generate novel hypotheses regarding antigen processing, and these hypotheses are now capable of being tested experimentally. This model confirms the feasibility of constructing a virtual immune system, whereby each additional step in antigen processing is incorporated into a single modular model. Accurate models of antigen processing have implications for the study of basic immunology as well as for the design of peptide-based vaccines and other immunotherapies. (C) 2004 Elsevier Inc. All rights reserved.