28 resultados para Process-based model
em University of Queensland eSpace - Australia
Resumo:
This paper describes a process-based metapopulation dynamics and phenology model of prickly acacia, Acacia nilotica, an invasive alien species in Australia. The model, SPAnDX, describes the interactions between riparian and upland sub-populations of A. nilotica within livestock paddocks, including the effects of extrinsic factors such as temperature, soil moisture availability and atmospheric concentrations of carbon dioxide. The model includes the effects of management events such as changing the livestock species or stocking rate, applying fire, and herbicide application. The predicted population behaviour of A. nilotica was sensitive to climate. Using 35 years daily weather datasets for five representative sites spanning the range of conditions that A. nilotica is found in Australia, the model predicted biomass levels that closely accord with expected values at each site. SPAnDX can be used as a decision-support tool in integrated weed management, and to explore the sensitivity of cultural management practices to climate change throughout the range of A. nilotica. The cohort-based DYMEX modelling package used to build and run SPAnDX provided several advantages over more traditional population modelling approaches (e.g. an appropriate specific formalism (discrete time, cohort-based, process-oriented), user-friendly graphical environment, extensible library of reusable components, and useful and flexible input/output support framework). (C) 2003 Published by Elsevier Science B.V.
Resumo:
In this paper, we present a framework for pattern-based model evolution approaches in the MDA context. In the framework, users define patterns using a pattern modeling language that is designed to describe software design patterns, and they can use the patterns as rules to evolve their model. In the framework, design model evolution takes place via two steps. The first step is a binding process of selecting a pattern and defining where and how to apply the pattern in the model. The second step is an automatic model transformation that actually evolves the model according to the binding information and the pattern rule. The pattern modeling language is defined in terms of a MOF-based role metamodel, and implemented using an existing modeling framework, EMF, and incorporated as a plugin to the Eclipse modeling environment. The model evolution process is also implemented as an Eclipse plugin. With these two plugins, we provide an integrated framework where defining and validating patterns, and model evolution based on patterns can take place in a single modeling environment.
Resumo:
In this second counterpoint article, we refute the claims of Landy, Locke, and Conte, and make the more specific case for our perspective, which is that ability-based models of emotional intelligence have value to add in the domain of organizational psychology. In this article, we address remaining issues, such as general concerns about the tenor and tone of the debates on this topic, a tendency for detractors to collapse across emotional intelligence models when reviewing the evidence and making judgments, and subsequent penchant to thereby discount all models, including the ability-based one, as lacking validity. We specifically refute the following three claims from our critics with the most recent empirically based evidence: (1) emotional intelligence is dominated by opportunistic academics-turned-consultants who have amassed much fame and fortune based on a concept that is shabby science at best; (2) the measurement of emotional intelligence is grounded in unstable, psychometrically flawed instruments, which have not demonstrated appropriate discriminant and predictive validity to warrant/justify their use; and (3) there is weak empirical evidence that emotional intelligence is related to anything of importance in organizations. We thus end with an overview of the empirical evidence supporting the role of emotional intelligence in organizational and social behavior.
Resumo:
An energy-based swing hammer mill model has been developed for coke oven feed preparation. it comprises a mechanistic power model to determine the dynamic internal recirculation and a perfect mixing mill model with a dual-classification function to mimic the operations of crusher and screen. The model parameters were calibrated using a pilot-scale swing hammer mill at various operating conditions. The effects of the underscreen configurations and the feed sizes on hammer mill operations were demonstrated through the fitted model parameters. Relationships between the model parameters and the machine configurations were established. The model was validated using the independent experimental data of single lithotype coal tests with the same BJD pilot-scale hammer mill and full operation audit data of an industrial hammer mill. The outcome of the energy-based swing hammer mill model is the capability to simulate the impact of changing blends of coal or mill configurations and operating conditions on product size distribution. Alternatively, the model can be used to select the machine settings required to achieve a desired product. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Over the past years, component-based software engineering has become an established paradigm in the area of complex software intensive systems. However, many techniques for analyzing these systems for critical properties currently do not make use of the component orientation. In particular, safety analysis of component-based systems is an open field of research. In this chapter we investigate the problems arising and define a set of requirements that apply when adapting the analysis of safety properties to a component-based software engineering process. Based on these requirements some important component-oriented safety evaluation approaches are examined and compared.
Resumo:
This paper addresses robust model-order reduction of a high dimensional nonlinear partial differential equation (PDE) model of a complex biological process. Based on a nonlinear, distributed parameter model of the same process which was validated against experimental data of an existing, pilot-scale BNR activated sludge plant, we developed a state-space model with 154 state variables in this work. A general algorithm for robustly reducing the nonlinear PDE model is presented and based on an investigation of five state-of-the-art model-order reduction techniques, we are able to reduce the original model to a model with only 30 states without incurring pronounced modelling errors. The Singular perturbation approximation balanced truncating technique is found to give the lowest modelling errors in low frequency ranges and hence is deemed most suitable for controller design and other real-time applications. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents a new method for producing a functional-structural plant model that simulates response to different growth conditions, yet does not require detailed knowledge of underlying physiology. The example used to present this method is the modelling of the mountain birch tree. This new functional-structural modelling approach is based on linking an L-system representation of the dynamic structure of the plant with a canonical mathematical model of plant function. Growth indicated by the canonical model is allocated to the structural model according to probabilistic growth rules, such as rules for the placement and length of new shoots, which were derived from an analysis of architectural data. The main advantage of the approach is that it is relatively simple compared to the prevalent process-based functional-structural plant models and does not require a detailed understanding of underlying physiological processes, yet it is able to capture important aspects of plant function and adaptability, unlike simple empirical models. This approach, combining canonical modelling, architectural analysis and L-systems, thus fills the important role of providing an intermediate level of abstraction between the two extremes of deeply mechanistic process-based modelling and purely empirical modelling. We also investigated the relative importance of various aspects of this integrated modelling approach by analysing the sensitivity of the standard birch model to a number of variations in its parameters, functions and algorithms. The results show that using light as the sole factor determining the structural location of new growth gives satisfactory results. Including the influence of additional regulating factors made little difference to global characteristics of the emergent architecture. Changing the form of the probability functions and using alternative methods for choosing the sites of new growth also had little effect. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A multiagent diagnostic system implemented in a Protege-JADE-JESS environment interfaced with a dynamic simulator and database services is described in this paper. The proposed system architecture enables the use of a combination of diagnostic methods from heterogeneous knowledge sources. The process ontology and the process agents are designed based on the structure of the process system, while the diagnostic agents implement the applied diagnostic methods. A specific completeness coordinator agent is implemented to coordinate the diagnostic agents based on different methods. The system is demonstrated on a case study for diagnosis of faults in a granulation process based on HAZOP and FMEA analysis.
Resumo:
Field and laboratory observations have shown that a relatively low beach groundwater table enhances beach accretion. These observations have led to the beach dewatering technique (artificially lowering the beach water table) for combating beach erosion. Here we present a process-based numerical model that simulates the interacting wave motion on the beach. coastal groundwater flow, swash sediment transport and beach profile changes. Results of model simulations demonstrate that the model replicates accretionary effects of a low beach water table on beach profile changes and has the potential to become a tool for assessing the effectiveness of beach dewatering systems. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The Ordos Plateau in China is covered with up to 300,000 ha of peashrub (Caragana) which is the dominant natural vegetation and ideal for fodder production. To exploit peashrub fodder, it is crucially important to optimize the culture conditions, especially culture substrate to produce pectinase complex. In this study, a new prescription process was developed. The process, based on a uniform experimental design, first optimizes the solid substrate and second, after incubation, applies two different temperature treatments (30 degrees C for the first 30 h and 23 degrees C for the second 42 h) in the fermentation process. A multivariate regression analysis is applied to a number of independent variables (water, wheat bran, rice dextrose, ammonium sulfate, and Tween 80) to develop a predictive model of pectinase activity. A second-degree polynomial model is developed which accounts for an excellent proportion of the explained variation (R-2 = 97.7%). Using unconstrained mathematical programming, an optimized substrate prescription for pectinase production is subsequently developed. The mathematical analysis revealed that the optimal formula for pectinase production from Aspergillus niger by solid fermentation under the conditions of natural aeration, natural substrate pH (about 6.5), and environmental humidity of 60% is rice dextrose 8%, wheat bran 24%, ammonium sulfate ((NH4)(2)SO4) 6%, and water 61%. Tween 80 was found to have a negative effect on the production of pectinase in solid substrate. With this substrate prescription, pectinase produced by solid fermentation of A. niger reached 36.3IU/(gDM). Goats fed on the pectinase complex obtain an incremental increase of 0.47 kg day(-1) during the initial 25 days of feeding, which is a very promising new feeding prospect for the local peashrub. It is concluded that the new formula may be very useful for the sustainable development of and and semiarid pastures such as those of the Ordos Plateau. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Coastal wetlands are dynamic and include the freshwater-intertidal interface. In many parts of the world such wetlands are under pressure from increasing human populations and from predicted sea-level rise. Their complexity and the limited knowledge of processes operating in these systems combine to make them a management challenge.Adaptive management is advocated for complex ecosystem management (Hackney 2000; Meretsky et al. 2000; Thom 2000;National Research Council 2003).Adaptive management identifies management aims,makes an inventory/environmental assessment,plans management actions, implements these, assesses outcomes, and provides feedback to iterate the process (Holling 1978;Walters and Holling 1990). This allows for a dynamic management system that is responsive to change. In the area of wetland management recent adaptive approaches are exemplified by Natuhara et al. (2004) for wild bird management, Bunch and Dudycha (2004) for a river system, Thom (2000) for restoration, and Quinn and Hanna (2003) for seasonal wetlands in California. There are many wetland habitats for which we currently have only rudimentary knowledge (Hackney 2000), emphasizing the need for good information as a prerequisite for effective management. The management framework must also provide a way to incorporate the best available science into management decisions and to use management outcomes as opportunities to improve scientific understanding and provide feedback to the decision system. Figure 9.1 shows a model developed by Anorov (2004) based on the process-response model of Maltby et al. (1994) that forms a framework for the science that underlies an adaptive management system in the wetland context.
Resumo:
Previous research shows that correlations tend to increase in magnitude when individuals are aggregated across groups. This suggests that uncorrelated constellations of personality variables (such as the primary scales of Extraversion and Neuroticism) may display much higher correlations in aggregate factor analysis. We hypothesize and report that individual level factor analysis can be explained in terms of Giant Three (or Big Five) descriptions of personality, whereas aggregate level factor analysis can be explained in terms of Gray's physiological based model. Although alternative interpretations exist, aggregate level factor analysis may correctly identify the basis of an individual's personality as a result of better reliability of measures due to aggregation. We discuss the implications of this form of analysis in terms of construct validity, personality theory, and its applicability in general. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
This paper addresses advanced control of a biological nutrient removal (BNR) activated sludge process. Based on a previously validated distributed parameter model of the BNR activated sludge process, we present robust multivariable controller designs for the process, involving loop shaping of plant model, robust stability and performance analyses. Results from three design case studies showed that a multivariable controller with stability margins of 0.163, 0.492 and 1.062 measured by the normalised coprime factor, multiplicative and additive uncertainties respectively give the best results for meeting performance robustness specifications. The controller robustly stabilises effluent nutrients in the presence of uncertainties with the behaviour of phosphorus accumulating organisms as well as to effectively attenuate major disturbances introduced as step changes. This study also shows that, performance of the multivariable robust controller is superior to multi-loops SISO PI controllers for regulating the BNR activated sludge process in terms of robust stability and performance and controlling the process using inlet feed flowrate is infeasible. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Queensland fruit fly, Bactrocera (Dacus) tryoni (QFF) is arguably the most costly horticultural insect pest in Australia. Despite this, no model is available to describe its population dynamics and aid in its management. This paper describes a cohort-based model of the population dynamics of the Queensland fruit fly. The model is primarily driven by weather variables, and so can be used at any location where appropriate meteorological data are available. In the model, the life cycle is divided into a number of discreet stages to allow physiological processes to be defined as accurately as possible. Eggs develop and hatch into larvae, which develop into pupae, which emerge as either teneral females or males. Both females and males can enter reproductive and over-wintering life stages, and there is a trapped male life stage to allow model predictions to be compared with trap catch data. All development rates are temperature-dependent. Daily mortality rates are temperature-dependent, but may also be influenced by moisture, density of larvae in fruit, fruit suitability, and age. Eggs, larvae and pupae all have constant establishment mortalities, causing a defined proportion of individuals to die upon entering that life stage. Transfer from one immature stage to the next is based on physiological age. In the adult life stages, transfer between stages may require additional and/or alternative functions. Maximum fecundity is 1400 eggs per female per day, and maximum daily oviposition rate is 80 eggs/female per day. The actual number of eggs laid by a female on any given day is restricted by temperature, density of larva in fruit, suitability of fruit for oviposition, and female activity. Activity of reproductive females and males, which affects reproduction and trapping, decreases with rainfall. Trapping of reproductive males is determined by activity, temperature and the proportion of males in the active population. Limitations of the model are discussed. Despite these, the model provides a useful agreement with trap catch data, and allows key areas for future research to be identified. These critical gaps in the current state of knowledge exist despite over 50 years of research on this key pest. By explicitly attempting to model the population dynamics of this pest we have clearly identified the research areas that must be addressed before progress can be made in developing the model into an operational tool for the management of Queensland fruit fly. (C) 2003 Published by Elsevier B.V.