191 resultados para Probabilistic choice models

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Action systems are a construct for reasoning about concurrent, reactive systems, in which concurrent behaviour is described by interleaving atomic actions. Sere and Troubitsyna have proposed an extension to action systems in which actions may be expressed and composed using discrete probabilistic choice as well as demonic nondeterministic choice. In this paper we develop a trace-based semantics for probabilistic action systems. This semantics provides a simple theoretical base on which practical refinement rules for probabilistic action systems may be justified.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an agent-based approach to modelling individual driver behaviour under the influence of real-time traffic information. The driver behaviour models developed in this study are based on a behavioural survey of drivers which was conducted on a congested commuting corridor in Brisbane, Australia. Commuters' responses to travel information were analysed and a number of discrete choice models were developed to determine the factors influencing drivers' behaviour and their propensity to change route and adjust travel patterns. Based on the results obtained from the behavioural survey, the agent behaviour parameters which define driver characteristics, knowledge and preferences were identified and their values determined. A case study implementing a simple agent-based route choice decision model within a microscopic traffic simulation tool is also presented. Driver-vehicle units (DVUs) were modelled as autonomous software components that can each be assigned a set of goals to achieve and a database of knowledge comprising certain beliefs, intentions and preferences concerning the driving task. Each DVU provided route choice decision-making capabilities, based on perception of its environment, that were similar to the described intentions of the driver it represented. The case study clearly demonstrated the feasibility of the approach and the potential to develop more complex driver behavioural dynamics based on the belief-desire-intention agent architecture. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A theory of value sits at the core of every school of economic thought and directs the allocation of resources to competing uses. Ecological resources complicate the modem neoclassical approach to determining value due to their complex nature, considerable non-market values and the difficulty in assigning property rights. Application of the market model through economic valuation only provides analytical solutions based on virtual markets, and neither the demand nor supply-side techniques of valuation can adequately consider the complex set of biophysical and ecological relations that lead to the provision of ecosystem goods and services. This paper sets out a conceptual framework for a complex systems approach to the value of ecological resources. This approach is based on there being both an intrinsic quality of ecological resources and a subjective evaluation by the consumer. Both elements are necessary for economic value. This conceptual framework points the way towards a theory of value that incorporates both elements, so has implications for principles by which ecological resources can be allocated. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To determine whether the choice of client fishes in the cleaner fish Labroides dimidiatus was influenced by client size, cleaner fish were given a choice of equal amount of food spread on large and small client redfin butterflyfish Chaetodon trifasciatus models. All large models received bites from cleaners compared to 27% for small models. Seventy-nine per cent of cleaners took their first bite from the large fish model. The results suggest that client size may affect cleaner fish choice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: The structure of proteins may change as a result of the inherent flexibility of some protein regions. We develop and explore probabilistic machine learning methods for predicting a continuum secondary structure, i.e. assigning probabilities to the conformational states of a residue. We train our methods using data derived from high-quality NMR models. Results: Several probabilistic models not only successfully estimate the continuum secondary structure, but also provide a categorical output on par with models directly trained on categorical data. Importantly, models trained on the continuum secondary structure are also better than their categorical counterparts at identifying the conformational state for structurally ambivalent residues. Conclusion: Cascaded probabilistic neural networks trained on the continuum secondary structure exhibit better accuracy in structurally ambivalent regions of proteins, while sustaining an overall classification accuracy on par with standard, categorical prediction methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Operator Choice Model (OCM) was developed to model the behaviour of operators attending to complex tasks involving interdependent concurrent activities, such as in Air Traffic Control (ATC). The purpose of the OCM is to provide a flexible framework for modelling and simulation that can be used for quantitative analyses in human reliability assessment, comparison between human computer interaction (HCI) designs, and analysis of operator workload. The OCM virtual operator is essentially a cycle of four processes: Scan Classify Decide Action Perform Action. Once a cycle is complete, the operator will return to the Scan process. It is also possible to truncate a cycle and return to Scan after each of the processes. These processes are described using Continuous Time Probabilistic Automata (CTPA). The details of the probability and timing models are specific to the domain of application, and need to be specified using domain experts. We are building an application of the OCM for use in ATC. In order to develop a realistic model we are calibrating the probability and timing models that comprise each process using experimental data from a series of experiments conducted with student subjects. These experiments have identified the factors that influence perception and decision making in simplified conflict detection and resolution tasks. This paper presents an application of the OCM approach to a simple ATC conflict detection experiment. The aim is to calibrate the OCM so that its behaviour resembles that of the experimental subjects when it is challenged with the same task. Its behaviour should also interpolate when challenged with scenarios similar to those used to calibrate it. The approach illustrated here uses logistic regression to model the classifications made by the subjects. This model is fitted to the calibration data, and provides an extrapolation to classifications in scenarios outside of the calibration data. A simple strategy is used to calibrate the timing component of the model, and the results for reaction times are compared between the OCM and the student subjects. While this approach to timing does not capture the full complexity of the reaction time distribution seen in the data from the student subjects, the mean and the tail of the distributions are similar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a personal view of the interaction between the analysis of choice under uncertainty and the analysis of production under uncertainty. Interest in the foundations of the theory of choice under uncertainty was stimulated by applications of expected utility theory such as the Sandmo model of production under uncertainty. This interest led to the development of generalized models including rank-dependent expected utility theory. In turn, the development of generalized expected utility models raised the question of whether such models could be used in the analysis of applied problems such as those involving production under uncertainty. Finally, the revival of the state-contingent approach led to the recognition of a fundamental duality between choice problems and production problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper addresses two major concerns that were identified when developing neural network based prediction models and which can limit their wider applicability in the industry. The first problem is that it appears neural network models are not readily available to a corrosion engineer. Therefore the first part of this paper describes a neural network model of CO2 corrosion which was created using a standard commercial software package and simple modelling strategies. It was found that such a model was able to capture practically all of the trends noticed in the experimental data with acceptable accuracy. This exercise has proven that a corrosion engineer could readily develop a neural network model such as the one described below for any problem at hand, given that sufficient experimental data exist. This applies even in the cases when the understanding of the underlying processes is poor. The second problem arises from cases when all the required inputs for a model are not known or can be estimated with a limited degree of accuracy. It seems advantageous to have models that can take as input a range rather than a single value. One such model, based on the so-called Monte Carlo approach, is presented. A number of comparisons are shown which have illustrated how a corrosion engineer might use this approach to rapidly test the sensitivity of a model to the uncertainities associated with the input parameters. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Smart State initiative requires both improved education and training, panicularly in technical fields, plus entrepreneurship to commercialise new ideas. In this study, we propose an entrepreneurial intentions model as a guide to examine the educational choices and entrepreneurial intentions of first-year University students, focusing on the effect of role models. A survey of over 1000 first-year University students revealed that the most enterprising students were choosing to study in the disciplines of information technology and business, economics and law, or selecting dual degree programs that include business. The role models most often identified for their choice of field of study were parents, followed by teachers and peers, with females identifying more role models than males. For entrepreneurship, students' role models were parents and peers, followed by famous persons and teachers. Males andfemales identified similar numbers of role models, but malesfound starting a business more desirable and more feasible, and reponed higher entrepreneurial intention. The implications of these findings for Sman State policy are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regional commodity forecasts are being used increasingly in agricultural industries to enhance their risk management and decision-making processes. These commodity forecasts are probabilistic in nature and are often integrated with a seasonal climate forecast system. The climate forecast system is based on a subset of analogue years drawn from the full climatological distribution. In this study we sought to measure forecast quality for such an integrated system. We investigated the quality of a commodity (i.e. wheat and sugar) forecast based on a subset of analogue years in relation to a standard reference forecast based on the full climatological set. We derived three key dimensions of forecast quality for such probabilistic forecasts: reliability, distribution shift, and change in dispersion. A measure of reliability was required to ensure no bias in the forecast distribution. This was assessed via the slope of the reliability plot, which was derived from examination of probability levels of forecasts and associated frequencies of realizations. The other two dimensions related to changes in features of the forecast distribution relative to the reference distribution. The relationship of 13 published accuracy/skill measures to these dimensions of forecast quality was assessed using principal component analysis in case studies of commodity forecasting using seasonal climate forecasting for the wheat and sugar industries in Australia. There were two orthogonal dimensions of forecast quality: one associated with distribution shift relative to the reference distribution and the other associated with relative distribution dispersion. Although the conventional quality measures aligned with these dimensions, none measured both adequately. We conclude that a multi-dimensional approach to assessment of forecast quality is required and that simple measures of reliability, distribution shift, and change in dispersion provide a means for such assessment. The analysis presented was also relevant to measuring quality of probabilistic seasonal climate forecasting systems. The importance of retaining a focus on the probabilistic nature of the forecast and avoiding simplifying, but erroneous, distortions was discussed in relation to applying this new forecast quality assessment paradigm to seasonal climate forecasts. Copyright (K) 2003 Royal Meteorological Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been an abundance of literature on the modelling of hydrocyclones over the past 30 years. However, in the comminution area at least, the more popular commercially available packages (e.g. JKSimMet, Limn, MODSIM) use the models developed by Nageswararao and Plitt in the 1970s, either as published at that time, or with minor modification. With the benefit of 30 years of hindsight, this paper discusses the assumptions and approximations used in developing these models. Differences in model structure and the choice of dependent and independent variables are also considered. Redundancies are highlighted and an assessment made of the general applicability of each of the models, their limitations and the sources of error in their model predictions. This paper provides the latest version of the Nageswararao model based on the above analysis, in a form that can readily be implemented in any suitable programming language, or within a spreadsheet. The Plitt model is also presented in similar form. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundamental principles of precaution are legal maxims that ask for preventive actions, perhaps as contingent interim measures while relevant information about causality and harm remains unavailable, to minimize the societal impact of potentially severe or irreversible outcomes. Such principles do not explain how to make choices or how to identify what is protective when incomplete and inconsistent scientific evidence of causation characterizes the potential hazards. Rather, they entrust lower jurisdictions, such as agencies or authorities, to make current decisions while recognizing that future information can contradict the scientific basis that supported the initial decision. After reviewing and synthesizing national and international legal aspects of precautionary principles, this paper addresses the key question: How can society manage potentially severe, irreversible or serious environmental outcomes when variability, uncertainty, and limited causal knowledge characterize their decision-making? A decision-analytic solution is outlined that focuses on risky decisions and accounts for prior states of information and scientific beliefs that can be updated as subsequent information becomes available. As a practical and established approach to causal reasoning and decision-making under risk, inherent to precautionary decision-making, these (Bayesian) methods help decision-makers and stakeholders because they formally account for probabilistic outcomes, new information, and are consistent and replicable. Rational choice of an action from among various alternatives-defined as a choice that makes preferred consequences more likely-requires accounting for costs, benefits and the change in risks associated with each candidate action. Decisions under any form of the precautionary principle reviewed must account for the contingent nature of scientific information, creating a link to the decision-analytic principle of expected value of information (VOI), to show the relevance of new information, relative to the initial ( and smaller) set of data on which the decision was based. We exemplify this seemingly simple situation using risk management of BSE. As an integral aspect of causal analysis under risk, the methods developed in this paper permit the addition of non-linear, hormetic dose-response models to the current set of regulatory defaults such as the linear, non-threshold models. This increase in the number of defaults is an important improvement because most of the variants of the precautionary principle require cost-benefit balancing. Specifically, increasing the set of causal defaults accounts for beneficial effects at very low doses. We also show and conclude that quantitative risk assessment dominates qualitative risk assessment, supporting the extension of the set of default causal models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the distribution of energy level spacings in two models describing coupled single-mode Bose-Einstein condensates. Both models have a fixed number of degrees of freedom, which is small compared to the number of interaction parameters, and is independent of the dimensionality of the Hilbert space. We find that the distribution follows a universal Poisson form independent of the choice of coupling parameters, which is indicative of the integrability of both models. These results complement those for integrable lattice models where the number of degrees of freedom increases with increasing dimensionality of the Hilbert space. Finally, we also show that for one model the inclusion of an additional interaction which breaks the integrability leads to a non-Poisson distribution.