46 resultados para Probabilistic cellular automata
em University of Queensland eSpace - Australia
Resumo:
Urban growth and change presents numerous challenges for planners and policy makers. Effective and appropriate strategies for managing growth and change must address issues of social, environmental and economic sustainability. Doing so in practical terms is a difficult task given the uncertainty associated with likely growth trends not to mention the uncertainty associated with how social and environmental structures will respond to such change. An optimization based approach is developed for evaluating growth and change based upon spatial restrictions and impact thresholds. The spatial optimization model is integrated with a cellular automata growth simulation process. Application results are presented and discussed with respect to possible growth scenarios in south east Queensland, Australia.
Resumo:
Agents make up an important part of game worlds, ranging from the characters and monsters that live in the world to the armies that the player controls. Despite their importance, agents in current games rarely display an awareness of their environment or react appropriately, which severely detracts from the believability of the game. Some games have included agents with a basic awareness of other agents, but they are still unaware of important game events or environmental conditions. This paper presents an agent design we have developed, which combines cellular automata for environmental modeling with influence maps for agent decision-making. The agents were implemented into a 3D game environment we have developed, the EmerGEnT system, and tuned through three experiments. The result is simple, flexible game agents that are able to respond to natural phenomena (e.g. rain or fire), while pursuing a goal.
Resumo:
We investigate the internal dynamics of two cellular automaton models with heterogeneous strength fields and differing nearest neighbour laws. One model is a crack-like automaton, transferring ail stress from a rupture zone to the surroundings. The other automaton is a partial stress drop automaton, transferring only a fraction of the stress within a rupture zone to the surroundings. To study evolution of stress, the mean spectral density. f(k(r)) of a stress deficit held is: examined prior to, and immediately following ruptures in both models. Both models display a power-law relationship between f(k(r)) and spatial wavenumber (k(r)) of the form f(k(r)) similar tok(r)(-beta). In the crack model, the evolution of stress deficit is consistent with cyclic approach to, and retreat from a critical state in which large events occur. The approach to criticality is driven by tectonic loading. Short-range stress transfer in the model does not affect the approach to criticality of broad regions in the model. The evolution of stress deficit in the partial stress drop model is consistent with small fluctuations about a mean state of high stress, behaviour indicative of a self-organised critical system. Despite statistics similar to natural earthquakes these simplified models lack a physical basis. physically motivated models of earthquakes also display dynamical complexity similar to that of a critical point system. Studies of dynamical complexity in physical models of earthquakes may lead to advancement towards a physical theory for earthquakes.
Resumo:
A statistical fractal automaton model is described which displays two modes of dynamical behaviour. The first mode, termed recurrent criticality, is characterised by quasi-periodic, characteristic events that are preceded by accelerating precursory activity. The second mode is more reminiscent of SOC automata in which large events are not preceded by an acceleration in activity. Extending upon previous studies of statistical fractal automata, a redistribution law is introduced which incorporates two model parameters: a dissipation factor and a stress transfer ratio. Results from a parameter space investigation indicate that a straight line through parameter space marks a transition from recurrent criticality to unpredictable dynamics. Recurrent criticality only occurs for models within one corner of the parameter space. The location of the transition displays a simple dependence upon the fractal correlation dimension of the cell strength distribution. Analysis of stress field evolution indicates that recurrent criticality occurs in models with significant long-range stress correlations. A constant rate of activity is associated with a decorrelated stress field.
Resumo:
The recurrence interval statistics for regional seismicity follows a universal distribution function, independent of the tectonic setting or average rate of activity (Corral, 2004). The universal function is a modified gamma distribution with power-law scaling of recurrence intervals shorter than the average rate of activity and exponential decay for larger intervals. We employ the method of Corral (2004) to examine the recurrence statistics of a range of cellular automaton earthquake models. The majority of models has an exponential distribution of recurrence intervals, the same as that of a Poisson process. One model, the Olami-Feder-Christensen automaton, has recurrence statistics consistent with regional seismicity for a certain range of the conservation parameter of that model. For conservation parameters in this range, the event size statistics are also consistent with regional seismicity. Models whose dynamics are dominated by characteristic earthquakes do not appear to display universality of recurrence statistics.
Resumo:
Urbanization and the ability to manage for a sustainable future present numerous challenges for geographers and planners in metropolitan regions. Remotely sensed data are inherently suited to provide information on urban land cover characteristics, and their change over time, at various spatial and temporal scales. Data models for establishing the range of urban land cover types and their biophysical composition (vegetation, soil, and impervious surfaces) are integrated to provide a hierarchical approach to classifying land cover within urban environments. These data also provide an essential component for current simulation models of urban growth patterns, as both calibration and validation data. The first stages of the approach have been applied to examine urban growth between 1988 and 1995 for a rapidly developing area in southeast Queensland, Australia. Landsat Thematic Mapper image data provided accurate (83% adjusted overall accuracy) classification of broad land cover types and their change over time. The combination of commonly available remotely sensed data, image processing methods, and emerging urban growth models highlights an important application for current and next generation moderate spatial resolution image data in studies of urban environments.
Resumo:
Simulations provide a powerful means to help gain the understanding of crustal fault system physics required to progress towards the goal of earthquake forecasting. Cellular Automata are efficient enough to probe system dynamics but their simplifications render interpretations questionable. In contrast, sophisticated elasto-dynamic models yield more convincing results but are too computationally demanding to explore phase space. To help bridge this gap, we develop a simple 2D elastodynamic model of parallel fault systems. The model is discretised onto a triangular lattice and faults are specified as split nodes along horizontal rows in the lattice. A simple numerical approach is presented for calculating the forces at medium and split nodes such that general nonlinear frictional constitutive relations can be modeled along faults. Single and multi-fault simulation examples are presented using a nonlinear frictional relation that is slip and slip-rate dependent in order to illustrate the model.
Resumo:
Map algebra is a data model and simple functional notation to study the distribution and patterns of spatial phenomena. It uses a uniform representation of space as discrete grids, which are organized into layers. This paper discusses extensions to map algebra to handle neighborhood operations with a new data type called a template. Templates provide general windowing operations on grids to enable spatial models for cellular automata, mathematical morphology, and local spatial statistics. A programming language for map algebra that incorporates templates and special processing constructs is described. The programming language is called MapScript. Example program scripts are presented to perform diverse and interesting neighborhood analysis for descriptive, model-based and processed-based analysis.
Resumo:
This paper presents results on the simulation of the solid state sintering of copper wires using Monte Carlo techniques based on elements of lattice theory and cellular automata. The initial structure is superimposed onto a triangular, two-dimensional lattice, where each lattice site corresponds to either an atom or vacancy. The number of vacancies varies with the simulation temperature, while a cluster of vacancies is a pore. To simulate sintering, lattice sites are picked at random and reoriented in terms of an atomistic model governing mass transport. The probability that an atom has sufficient energy to jump to a vacant lattice site is related to the jump frequency, and hence the diffusion coefficient, while the probability that an atomic jump will be accepted is related to the change in energy of the system as a result of the jump, as determined by the change in the number of nearest neighbours. The jump frequency is also used to relate model time, measured in Monte Carlo Steps, to the actual sintering time. The model incorporates bulk, grain boundary and surface diffusion terms and includes vacancy annihilation on the grain boundaries. The predictions of the model were found to be consistent with experimental data, both in terms of the microstructural evolution and in terms of the sintering time. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.