13 resultados para Primary energy source uncertainty
em University of Queensland eSpace - Australia
Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease
Resumo:
Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of the total body mass and a major player in energy balance. It accounts for > 30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the pathophysiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidernia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease. (c) 2005 Published by Elsevier Ltd.
Resumo:
A novel method that relies on the decoupling of the energy production and biosynthesis processes was used to characterise the maintenance, cell lysis and growth processes of Nitrosomonas sp. A Nitrosolnonas culture was enriched in a sequencing batch reactor (SBR) with ammonium as the sole energy source. Fluorescent in situ hybridization (FISH) showed that Nitrosomonas bound to the NEU probe constituted 82% of the bacterial population, while no other known ammonium or nitrite oxidizing bacteria were detected. Batch tests were carried out under conditions that both ammonium and CO, were in excess, and in the absence of one of these two substrates. The oxygen uptake rate and nitrite production rate were measured during these batch tests. The results obtained from these batch tests, along with the SBR performance data, allowed the determination of the maintenance coefficient and the in situ cell lysis rate, as well as the maximum specific growth rate of the Nitrosomonas culture. It is shown that, during normal growth, the Nitrosomonas culture spends approximately 65% of the energy generated for maintenance. The maintenance coefficient was determined to be 0.14 - 0.16 mgN mgCOD(biomass)(-1) h(-1), and was shown to be independent of the specific growth rate. The in situ lysis rate and the maximum specific growth rate of the Nitrosomonas culture were determined to be 0.26 and 1.0 day(-1) (0.043 h(-1)), respectively, under aerobic conditions at 30 degrees C and pH7. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The sheathed filamentous bacterium known as strain CT3, isolated by micromanipulation from an activated sludge treatment plant in Italy, is a member of the genus Thiothrix in the gamma-Proteobacteria according to 16S rDNA sequence analysis. The closest phylogenetic neighbours of strain CT3 are strains I and Q(T), which were also isolated from activated sludge and belong to the species Thiothrix fructosivorans. These strains have respectively 99.2 and 99.4 % similarity to CT3 by 16S rDNA sequence comparison. CT3 shows 63-67 % DNA-DNA hybridization with strain I, which is the only currently viable strain of T. fructosivorans. CT3 is the second strain in the genus Thiothrix that has been shown to be capable of growing autotrophically with reduced sulfur compounds as the sole energy source; autotrophy was also confirmed in strain I. The first reported chemolithoautotrophic isolate of this genus was a strain of 'Thiothrix ramosa' that was isolated from a hydrogen sulfide spring and is morphologically distinguishable from all other described strains of Thiothrix, including CT3. CT3 is an aerobic organism that is non-fermentative, not capable of denitrification and able to grow heterotrophically. Autotrophy in the genus Thiothrix should be investigated more fully to better define the taxonomy of this genus.
Resumo:
Four mine waste beach longitudinal profile equations are compared theoretically and in statistical analyses of profile data from 64 field and laboratory beaches formed by mine tailings, co-disposed coal mine wastes, and sand. All four equations fit the profile data well. The best performing equation both accounts for particle sorting and satisfies hydraulic constraints, and the combination of assumptions underlying it is considered to best represent the processes occurring on mine waste beaches. Combining these assumptions with the Lacey normal equation leads to a variant of the Manning resistance equation. Features that it is desirable to incorporate in theoretical and numerical models of mine waste beaches are listed.
Resumo:
Effects of monensin (Mon) on performance of Holstein-Friesian cows fed tropical grasses and cane molasses (M) or cereal grain were examined in three experiments. In experiment I (incomplete 4 x 4 Latin square), three rumen-fistulated cows [188 I I days in milk (DIM)] were fed mixed diets based on rhodes grass (Chloris gayana cv. Callide) bay where M was substituted for wheat grain (W) at rates of 0 (MO), 125 (M 125) or 250 (M250) g/kg dry matter (DM). A fourth diet contained M250 plus 0.02 g Mon/kg DM (M250 + Mon). Substituting M for W tended (P < 0.10) to decrease the ratio of rumen molar proportions of acetate+butyrate (Bu):propionate (Pr) (4.3 versus 3.8 and 4.0 for M0, M125 and M250, respectively). There were no treatment effects (P> 0.10) on intake, organic matter digestibility, milk production or liveweight (LW) change. In experiment 2, 48 cows (173 &PLUSMN; 28.3 DIM) grazing kikuyu (Pennisetum clandestinum cv. common) pastures and supplemented with maize silage and a grain-based concentrate were offered either M (2.6 kg DM/(cow day)) or barley grain (B) (2.7 kg DM/(cow day)). Within each supplement type, half were fed 0 or 320 mg of Mon/(cow day). There were Mon x supplement interactions (Mon x S; P < 0.05) on the rumen molar proportion of Pr and Bu at 15:00 h, with B + Mon having the highest value for Pr (0.259 mmol/mmol) and lowest value for Bu (0.121 mmol/mmol). A Mon x S effect (P < 0.05) on milk fat content was noted with Mon causing a lower value regardless of energy source (31 and 36 g/l versus 40 and 38 g/l for B + Mon, M + Mon, B - Mon and M - Mon, respectively). As a main effect, M as opposed to B, reduced yields of milk (P < 0.05; 16.21/(cow day) versus 18.01/(cow day)) and protein (P < 0.05; 479 g/(cow day) versus 538 g/(cow day)). Monensin reduced milk fat yield (P < 0.05; 669 g/(cow day) versus 562 g/(cow day)), raised milk protein concentration (P < 0.05; 31 g/l versus 29 g/l) and caused LW gain rather than loss (P < 0.05; +0.06 kg/(cow day) versus -0.30 kg/(cow day)). No treatment effects on pasture intake were noted. In experiment 3, 48 cows (91 &PLUSMN; 16.1 DIM) grazing kikuyu pasture and supplemented with grain-based concentrate, sugar cane silage and 2.7 kg DM(cow day) of M were supplemented with either 0 or 320 mg Mon/(cow day). Monensin reduced (P < 0.05) milk fat content (33 g/l versus 30 g/l) and tended (P < 0.10) to reduce milk protein content (29 g/l versus 28 g/l). No effects of Mon on other milk production parameters, LW change or pasture intake were noted. Feeding monensin to mid-lactation Holstein-Friesian cows offered diets based on tropical grasses, and cane molasses or grain, improves rumen fermentation efficiency, thereby improving energy efficiency resulting in higher LW gain. Monensin had no effect on milk yield, but reduced milk fat concentration.
Resumo:
This study compares process data with microscopic observations from an anaerobic digestion of organic particles. As the first part of the study, this article presents detailed observations of microbial biofilm architecture and structure in a 1.25-L batch digester where all particles are of an equal age. Microcrystalline cellulose was used as the sole carbon and energy source. The digestions were inoculated with either leachate from a 220-Lanaerobic municipal solid waste digester or strained rumen contents from a fistulated cow. The hydrolysis rate, when normalized by the amount of cellulose remaining in the reactor, was found to reach a constant value 1 day after inoculation with rumen fluid, and 3 days after inoculating with digester leachate. A constant value of a mass specific hydrolysis rate is argued to represent full colonization of the cellulose surface and first-order kinetics only apply after this point. Additionally, the first-order hydrolysis rate constant, once surfaces were saturated with biofilm, was found to be two times higher with a rumen inoculum, compared to a digester leachate inoculum. Images generated by fluorescence in situ hybridization (FISH) probing and confocal laser scanning microscopy show that the microbial communities involved in the anaerobic biodegradation process exist entirely within the biofilm. For the reactor conditions used in these experiments, the predominant methanogens exist in ball-shaped colonies within the biofilm. (C) 2005 Wiley Periodicals, Inc.
Dietary analysis of the herbivorous hemiramphid Hyporhamphus regularis ardelio: an isotopic approach
Resumo:
The stable isotope values for a range of size classes of Hyporhamphus regularis ardelio from Moreton Bay, south-east Australia were determined. There was a positive linear relationship between 613 C and standard length (L-s) (delta(13)C = 0.034 Ls - 16-23; r(2) = 0.78). delta(13)C ranged from -8.48 to - 17.29 parts per thousand with the smallest size class (50 mm Ls) being on average 1.04 parts per thousand enriched with respect to that of zooplankton (Temora turbinata) and 7.97 parts per thousand depleted compared to Zostera capricorni. delta(13)C was positively correlated with Ls (P 0.0 1) with delta(15) N, ranging from 9.18 to 11.00 parts per thousand. Fish of all size classes were on average 2.32 and 7.63 parts per thousand more enriched than zooplankton and seagrass, respectively. Carbon isotope data indicate that H. r. ardelio commence life as carnivores and change to a diet in which seagrass is the primary carbon source. The dependence on animal matter, however, is always present. Due to the low percentage of nitrogen in Z. capricorni (2.5%) compared to zooplankton (9.1%) it appears that nitrogen from zooplankton is necessary throughout their life history with the carbon requirements for these fish coming chiefly from Z. capricorni. (c) 2005 The Fisheries Society of the British Isles.
Resumo:
Cleavage-stage embryos have an absolute requirement for pyruvate and lactate, but as the morula compacts, it switches to glucose as the preferred energy source to fuel glycolysis. Substrates such as glucose, amino acids, and lactate are moved into and out of cells by facilitated diffusion. in the case of lactate and pyruvate, this occurs via H+-monocarboxylate cotransporter (MCT) proteins. To clarify the role of MCT in development, transport characteristics for DL-lactate were examined, as were mRNA expression and protein localisation for MCT1 and MCT3, using confocal laser scanning immunofluorescence in freshly collected and cultured embryos. Blastocysts demonstrated significantly higher affinity for DL-lactate than zygotes (K-m 20 +/- 10 vs 87 +/- 35 mmol lactate/l; P = 0.03 by linear regression) but was similar for all stages. For embryos derived in vivo and those cultured with glucose, MCT1 mRNA was present throughout preimplantation development, protein immunoreactivity appearing diffuse throughout the cytoplasm with brightest intensity in the outer cortical region of blastomeres. in expanding blastocysts, MCT1 became more prominent in the cytoplasmic cortex of blastomeres, with brightest intensity in the polar trophectoderm. Without glucose, MCT1 mRNA was not expressed, and immunoreactivity dramatically reduced in intensity as morulae died. MCT3 mRNA and immunoreactivity were not detected in early embryos. The differential expression of MCT1 in the presence or absence of glucose demonstrates that it is important in the critical regulation of pH and monocarboxylate transport during preimplantation development, and implies a role for glucose in the control of MCT1, but not MCT3, expression.
Resumo:
The economical and environmental effects of mass reduction through Al and Mg primary alloys substitutions for cast iron and steel in automotive components are discussed using MF. Ashby's penalty functions method The viability of Mg alloy substitutions for existing Al alloy cast components is also considered. The cost analysis shows that direct, equal-volume, Al alloy substitutions for cast iron and steel are the most feasible in terms of the CAFE liability, followed by substitutions involving flat panels of prescribed stiffness. When the creation of CO2 associated to the production of Al and Mg is considered, the potential gasoline savings over the lifespan of the car compensate for the intrinsic environmental burden of Al in all applications, while electrolytic Mg substitutions for cast iron and steel are feasible for equal volume and panels only. Magnesium produced by the Pidgeon thermal process appears to be too primary energy intensive to be competitive in structural applications. Magnesium substitutions for existing Al alloy beams and panels are generally unviable. The current higher recycling efficiency of Al casting alloys confers Al a significant advantage over Mg alloys.