8 resultados para Prenylated flavonoids
em University of Queensland eSpace - Australia
Resumo:
Flavonoids, phenolic acids and abscisic acid of Australian and New Zealand Leptospermum honeys were analyzed by HPLC. Fifteen flavonoids were isolated in Australian jelly bush honey (Leptospermum polygalifolium), with an average content of 2.22 mg/100 g honey. Myricetin (3,5,7,3',4',5'-hexahydroxyflavone), luteolin (5,7,3',4'-tetrahydroxyflavone) and tricetin (5,7,3',4',5'-pentahydroxyflavone) were the main flavonoids identified. The mean content of total phenolic acids in jelly bush honey was 5.14 mg/100 g honey, with gallic and coumaric acids as the potential phenolic acids. Abscisic acid was quantified as twice the amount (11.6 mg/100 g honey) of the phenolic acids in this honey. The flavonoid profile mainly consisted of quercetin (3,5,7,3',4'-pentahydroxyflavone), isorhamnetin (3,5,7,4'-tetrahydroxyflavone 3'-methyl ethyl), chrysin (5,7-dihydroxyflavone), luteolin and an unknown flavanone in New Zealand manuka (Leptospermum scoparium) honey with an average content of total flavonoids of 3.06 mg/100 g honey. The content of total phenolic acids was up to 14.0 mg/100 g honey, with gallic acid as the main component. A substantial quantity (32.8 mg/100 g honey) of abscisic acid was present in manuka honey. These results showed that flavonoids and phenolic acids could be used for authenticating honey floral origins, and abscisic acid may aid in this authentication. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Flavonoids in Australian honeys from five botanical species (Melaleuca, Guioa, Lophostemon, Banksia and Helianthus) have been analyzed in relation to their floral origins. Tea tree (Melaleuca quinquenervia) and heath (Banksia ericifolia) honeys show a common flavonoid profile comprising myricetin (3,5,7,3',4',5'-hexahydroxyflavone), tricetin (5,7,3',4,5'-pentahydroxyflavone), querectin (3,5,7,3',4'-pentahydroxyflavone) and luteolin (5,7,3',4'-tetrahydroxyflavone), which was previously suggested as a floral marker for an Australian Eucalyptus honey (bloodwood or Eucalyptus intermedia honey). These honeys of various floral species can be differentiated by their levels of total flavonoids, being 2.12 mg/100 g for heath honey and 6.35 m/100 g for tea tree honey. In brush box (Lophostemon conferta) honey, the flavonoid profile comprising mainly tricetin, luteolin and quercetin is similar to that of another Eucalyptus honey (yellow box or Eucalyptus melliodora honey). These results indicate that the flavonoid profiles in some of the Australian non-Eucalyptus honeys may contain more or less certain flavonoids from Eucalyptus floral sources because of the diversity and extensive availability of Eucalyptus nectars for honeybee foraging yearly around or a possible cross contamination of the monofloral honeys during collection, transportation and/or storage. Further analyses are required to differentiate and/or verify the botanical sources of the flavonoids that contribute to the flavonoid profiles of these honeys, by restricting honey sampling areas and procedures, employing other complementary analytical methods (e.g. pollen analysis, sugar profile) and using materials (e.g. nectar) directly sourced from the flowering plant for comparative studies. In Australian crow ash (Guioa semiglauca) honey, myricetin, tricetin, quercetin, luteolin and an unknown flavonoid have been found to be the main flavonoids, which is characteristic only to this type of honey, and could thus be used as the floral marker, while in Australian sunflower (Helianthus annuus) honey, the content of total flavonoids is the smallest amount comparing to those in the other honeys analysed in this study. However, the flavonoid quercetin and the flavonoid profile mainly consisting of quercetin, quercetin 3,3'-dimethyl ether (5,7,4'-trihydroxy3,3'-dimethoxyflavone), myricetin and luteolin are characteristic only to this sunflower honey and could thus be used for the authentication.
Resumo:
In both animal models and humans, the first and obligatory step in the activation of arylamines is N-hydroxylation. This pathway is primarily mediated by the phase-I enzymes CYP1A1, CYP1A2 and CYP4B1. In the presence of flavonoids such as alpha-naphthoflavone and flavone, both CYP3A4 and CYP3A5 have also been shown to play a minor role in the activation of food-derived heterocyclic amines. The further activation of N-hydroxyarylamines by phase-II metabolism can involve both N,O-acetylation and N,O-sulfonation catalyzed by N-acetyltransferases (NAT1 and NAT2) and sulfotransferases, respectively. Using an array of techniques, we have been unable to detect constitutive CYP1A expression in any segments of the human gastrointestinal tract. This is in contrast to the rabbit where CYP1A1 protein was readily detectable on immunoblots in microsomes prepared from the small intestine. In humans, CYP3A3/3A4 expression was detectable in the esophagus and all segments of the small intestine. Northern blot analysis of eleven human colons showed considerable heterogeneity in CYP3A mRNA between individuals, with the presence of two mRNA species in same subjects. Employing the technique of hybridization histochemistry (also known as in situ hybridization), CYP4B1 expression was observed in some human colons but not in the liver or the small intestine. Hybridization histochemistry studies have also demonstrated variable NAT1 and NAT2 expression in the human gastrointestinal tract. NAT1 and NAT2 mRNA expression was detected in the human liver, small intestine, colon, esophagus, bladder, ureter, stomach and lung. Using a general aryl sulfotransferase riboprobe (HAST1), we have demonstrated marked sulfotransferase expression in the human colon, small intestine, lung, stomach and liver. These studies demonstrate that considerable variability exists in the expression of enzymes involved in the activation of aromatic amines in human tissues. The significance of these results in relation to a role for heterocyclic amines in colon cancer is discussed.
Resumo:
The ataxia-telangiectasia mutated (ATM) protein kinase is activated in response to ionizing radiation (IR) and activates downstream DNA-damage signaling pathways. Although the role of ATM in the cellular response to ionizing radiation has been well characterized, its role in response to other DNA-damaging agents is less well defined. We previously showed that genistein, a naturally occurring isoflavonoid, induced increased ATM protein kinase activity, ATM-dependent phosphorylation of p53 on serine 15 and activation of the DNA-binding properties of p53. Here. we show that genistein also induces phosphorylation of p53 at serines 6, 9, 20,46, and 392, and that genistein-induced accumulation and phosphorylation of p53 is reduced in two ATM-deficient human cell lines. Also, we show that genistein induces phosphorylation of ATM on serine 1981 and phosphorylation of histone H2AX on serine 139. The related bioflavonoids, daidzein and biochanin A, did not induce either phosphorylation of p53 or ATM at these sites. Like genistein, quercetin induced phosphorylation of ATM on serine 198 1, and ATM-dependent phosphorylation of histone H2AX on serine 139; however, p53 accumulation and phosphorylation on serines 6, 9, 15, 20, 46, and 392 occurred in ATM-deficient cells, indicating that ATM is not required for quercetin-induced phosphorylation of p53. Our data suggest that genistein and quercetin induce different DNA-damage induced signaling pathways that, in the case of genistein, are highly ATM-dependent but, in the case of quercetin, may be ATM-dependent only for some downstream targets. (C) 2003 Elsevier B.V. All rights reserved.
Role of dietary factors in the development of basal cell cancer and squamous cell cancer of the skin
Resumo:
The role of dietary factors in the development of skin cancer has been investigated for many years; however, the results of epidemiologic studies have not been systematically reviewed. This article reviews human studies of basal cell cancer (BCC) and squamous cell cancer (SCC) and includes all studies identified in the published scientific literature investigating dietary exposure to fats, retinol, carotenoids, vitamin E, vitamin Q and selenium. A total of 26 studies were critically reviewed according to study design and quality of the epidemiologic evidence. Overall, the evidence suggests a positive relationship between fat intake and BCC and SCC, an inconsistent association for retinol, and little relation between beta-carotene and BCC or SCC development. There is insufficient evidence on which to make a judgment about an association of other carotenoids with skin cancer. The evidence for associations between vitamin E, vitamin C, and selenium and both BCC and SCC is weak. Many of the existing studies contain limitations, however, and further well-designed and implemented studies are required to clarify the role of diet in skin cancer. Additionally, the role of other dietary factors, such as flavonoids and other polyphenols, which have been implicated in skin cancer development in animal models, needs to be investigated.