7 resultados para Predators

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spiders are among the most abundant predators recorded in grain crops in Australia. They are voracious predators, and combined with their high abundance, may play an important role in the reduction of pest populations. The significance of spider assemblages as biological control agents of key pests such as Helicoverpa spp. in Australian agroecosystems is largely unknown. A thorough inventory was made of the spider fauna inhabiting unsprayed soybean fields at Gatton, south-east Queensland. One-hundred-and-two morphospecies from 28 families were collected using vacuum sampling and pitfall traps across two summer seasons (2000-01, 2001-02). No-choice feeding tests in the laboratory, using eggs and larvae of Helicoverpa armigera (Hubner) as prey, were used to ascertain the predatory potential of each spider group. The field-collected spider assemblage ate on average 2.4 (+/-0.7 standard error) to 5.0 (+/-0.8) eggs per 24 h per spider (10-25% of those available), depending on level of starvation. Clubionidae were the only spiders to readily consume eggs in the laboratory (mean of 18.4 +/- 1.5 eggs per starved spider and 8.2 +/- 3.9 per non-starved spider after 24 h). Starved spiders consumed 9.4 (+/- 0.1) first-instar larvae per 24 h per spider (90% of those available). This information was combined with field observations and literature from Australian and overseas studies to assess the potential of spider groups as predators of Helicoverpa spp. Lycosidae, Clubionidae, Oxyopidae, Salticidae and Thomisidae have the capacity to contribute to control of Helicoverpa spp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lucerne (Medicago sativa) has been suggested as an ideal refuge habitat as part of an integrated pest management (IPM) program because it harbours high numbers of beneficial arthropods. Whether or not cutting of lucerne encourages the movement of these beneficials into adjacent target crops is unknown. Vacuum samples were used to determine the effects of cutting lucerne on arthropod abundance (pests and predators) within lucerne and adjacent soybean (Glycine max) crops. Vacuum-sample collections of arthropods were conducted before and after lucerne cutting on seven occasions in four fields over two seasons. In the lucerne, 10 m by 1 m strips parallel to the crop interface were sampled at 5, 10, 15, 20 and 30 m from the interface. In the soybean, 10 m of row were sampled at the same distances from the crop interface. The abundance of predators in lucerne was reduced immediately after cutting at all distances from the interface. Predator abundance in soybean did not show any change. The cutting of lucerne significantly reduced pest numbers within the lucerne but had little effect on pest abundance in the adjacent soybean. The temporal pattern in pest and predator abundance was very different for each field sampled. Generally, arthropods decreased in abundance after cutting and gradually increased as the lucerne grew back. In soybeans, arthropod numbers fluctuated regardless of the cutting of the lucerne. Cutting of lucerne alone does not guarantee movement of predators into the adjacent target crop. The presence of lucerne fields within a cropping area may have some impact on regional predator populations, and so still be useful for IPM programs, but this has yet to be tested critically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predator-induced morphological plasticity is a model system for investigating phenotypic plasticity in an ecological context. We investigated the genetic basis of the predator-induced plasticity in Rana lessonae by determining the pattern of genetic covariation of three morphological traits that were found to be induced in a predatory environment. Body size decreased and tail dimensions increased when reared in the presence of preying dragonfly larvae. Genetic variance in body size increased by almost an order of magnitude in the predator environment, and the first genetic principal component was found to be highly significantly different between the two environments. The across environment genetic correlation for body size was significantly below 1 indicating that different genes contributed to this trait in the two environments. Body size may therefore be able to respond to selection independently in the two environments to some extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The spatial heterogeneity of predator populations is an important component of ecological theories pertaining to predator-prey dynamics. Most studies within agricultural fields show spatial correlation (positive or negative) between mean predator numbers and prey abundance across a whole field over time but generally ignore the within-field spatial dimension. We used explicit spatial mapping to determine if generalist predators aggregated within a soybean field, the size of these aggregations and if predator aggregation was associated with pest aggregation, plant damage and predation rate. 2. The study was conducted at Gatton in the Lockyer Valley, 90 km west of Brisbane, Australia. Intensive sampling grids were used to investigate within-field spatial patterns. The first row of each grid was located in a lucerne field (10 m from interface) and the remaining rows were in an adjacent soybean field. At each point on the grid the abundance of foliage-dwelling and ground-dwelling pests and predators was measured, predation rates [using sentinel Helicoverpa armigera (Hubner) egg cards] and plant damage were estimated. Eight grids were sampled across two summer cropping seasons (2000/01, 2001/02). 3. Predators exhibited strong spatial patterning with regions of high and low abundance and activity within what are considered to be uniform soybean fields. Ground-dwelling and foliage-dwelling predators were often aggregated in patches approximately 40 m across. 4. Lycosidae (wolf spiders) displayed aggregation and were consistently more abundant within the lucerne, with a decreasing trap catch with distance from the lucrene/soybean interface. This trend was consistent between subsequent grids in a single field and between fields. 5. The large amount of spatial variability in within-field arthropod abundance (pests and predators) and activity (egg predation and plant damage) indicates that whole field averages were misleading. This result has serious implications for sampling of arthropod abundance and pest management decision-making based on scouting data. 6. There was a great deal of temporal change in the significant spatial patterns observed within a field at each sampling time point during a single season. Predator and pest aggregations observed in these fields were generally not stable for the entire season. 7. Predator aggregation did not correlate consistently with pest aggregation, plant damage or predation rate. Spatial patterns in predator abundance were not associated consistently with any single parameter measured. The most consistent positive association was between foliage-dwelling predators and pests (significant in four of seven grids). Inferring associations between predators and prey based on an intensive one-off sampling grid is difficult, due to the temporal variability in the abundance of each group. 8. Synthesis and applications. This study demonstrated that generalist predator populations are rarely distributed randomly and field edges and adjacent crops can have an influence on within-field predator abundance. This must be considered when estimating arthropod (pest and predator) abundance from a set of samples taken at random locations within a field.