3 resultados para Power euality mitigation devices
em University of Queensland eSpace - Australia
Resumo:
Bifurcation analysis is a very useful tool for power system stability assessment. In this paper, detailed investigation of power system bifurcation behaviour is presented. One and two parameter bifurcation analysis are conducted on a 3-bus power system. We also examined the impact of FACTS devices on power system stability through Hopf bifurcation analysis by taking static Var compensator (SVC) as an example. A simplified first-order model of the SVC device is included in the 3-bus sample system. Real and reactive powers are used as bifurcation parameter in the analysis to compare the system oscillatory properties with and without SVC. The simulation results indicate that the linearized system model with SVC enlarge the voltage stability boundary by moving Hopf bifurcation point to higher level of loading conditions. The installation of SVC increases the dynamic stability range of the system, however complicates the Hopf bifurcation behavior of the system
Resumo:
Purpose: Although manufacturers of bicycle power monitoring devices SRM and Power Tap (PT) claim accuracy to within 2.5%, there are limited scientific data available in support. The purpose of this investigation was to assess the accuracy of SRM and PT under different conditions. Methods: First, 19 SRM were calibrated, raced for 11 months, and retested using a dynamic CALRIG (50-1000 W at 100 rpm). Second, using the same procedure, five PT were repeat tested on alternate days. Third, the most accurate SRM and PT were tested for the influence of cadence (60, 80, 100, 120 rpm), temperature (8 and 21degreesC) and time (1 h at similar to300 W) on accuracy. Finally, the same SRM and PT were downloaded and compared after random cadence and gear surges using the CALRIG and on a training ride. Results: The mean error scores for SRM and PT factory calibration over a range of 50-1000 W were 2.3 +/- 4.9% and -2.5 +/- 0.5%, respectively. A second set of trials provided stable results for 15 calibrated SRM after 11 months (-0.8 +/- 1.7%), and follow-up testing of all PT units confirmed these findings (-2.7 +/- 0.1%). Accuracy for SRM and PT was not largely influenced by time and cadence; however. power output readings were noticeably influenced by temperature (5.2% for SRM and 8.4% for PT). During field trials, SRM average and max power were 4.8% and 7.3% lower, respectively, compared with PT. Conclusions: When operated according to manufacturers instructions, both SRM and PT offer the coach, athlete, and sport scientist the ability to accurately monitor power output in the lab and the field. Calibration procedures matching performance tests (duration, power, cadence, and temperature) are, however, advised as the error associated with each unit may vary.
Resumo:
Arsenic contamination of groundwater (0.05 to 0.84 mg/L) in Kuitun, Xinjiang was first found in 1970’s. Alternative clean surface water was introduced in 1985. We aimed to assess the exposure and heath outcome since the mitigation. In 2000, we collected a total of 360 urine samples from villagers from the endemic area and a nearby control area for arsenic (As), porphyrins and malondialdehyde (MDA) measurements. The averaged urinary As level of villagers from the endemic site (117±8.3 μg/g creatinine; 4.2 to 943.8 μg/g creat) was higher than that of the control site (73.6±3.2 μg/g creat). No significant differences were found in urinary porphyrins or MDA between the endemic and control sites. However, when the urinary arsenic was higher than 150 μg/g creat, these two biomarkers were higher in the exposed group than the control. Within the exposed group, villagers with arsenic-related skin symptoms had higher arsenic, uroporphyrin and MDA compared to those who had not shown symptoms. Sine the water mitigation, villagers whose urinary arsenic levels were 270 μg/g creat dropped from 20% to 10% of the population. Population with arsenic-related skin symptoms remained unchanged at 31%. We noted that 7.8% of those who had skin lesions were born after the implementation of intervention and that some villagers still prefer to drink the groundwater. Further, in the dry season, lack of surface water and electrical power breakdowns are to blame for failure to ensure continuous supply of clean water. It is concluded that despite the prompt action and successful water mitigation program to curb arsenic poisonings, it is essential to continue to monitor the health outcome of this population.