74 resultados para Positioning precision
em University of Queensland eSpace - Australia
Resumo:
The effects of temporal precision constraints and movement amplitude on performance of an interceptive aiming task were examined. Participants were required to strike a moving target object with a 'bat' by moving the bat along a straight path (constrained by a linear slide) perpendicular to the path of the target. Temporal precision constraints were defined in terms of the time period (or window) within which contact with the target was possible. Three time windows were used (approx. 35, 50 and 65 ms) and these were achieved either by manipulating the size of the bat (experiment 1a), the size of the target (experiment 1b) or the speed of the target (experiment 2). In all experiments, movement time (MT) increased in proportion to movement amplitude but was only affected by differences in the temporal precision constraint if this was achieved by variation in the target's speed. In this case the MT was approximately inversely proportional to target speed. Peak movement speed was affected by temporal accuracy constraints in all three experiments: participants reached higher speeds when the temporal precision required was greater. These results are discussed with reference to the speed-accuracy trade-off observed for temporally constrained aiming movements. It is suggested that the MT and speed of interceptive aiming movements may be understood as responses to the spatiotemporal constraints of the task.
Resumo:
This paper reviews the potential use of three types of spatial technology to land managers, namely satellite imagery, satellite positioning systems and supporting computer software. Developments in remote sensing and the relative advantages of multispectral and hyperspectral images are discussed. The main challenge to the wider use of remote sensing as a land management tool is seen as uncertainty whether apparent relationships between biophysical variables and spectral reflectance are direct and causal, or artefacts of particular images. Developments in satellite positioning systems are presented in the context of land managers’ need for position estimates in situations where absolute precision may or may not be required. The role of computer software in supporting developments in spatial technology is described. Spatial technologies are seen as having matured beyond empirical applications to the stage where they are useful and reliable land management tools. In addition, computer software has become more user-friendly and this has facilitated data collection and manipulation by semi-expert as well as specialist staff.
The Las Campanas/AAT rich cluster survey - I. Precision and reliability of the photometric catalogue
Resumo:
The Las Campanas Observatory and Anglo-Australian Telescope Rich Cluster Survey (LARCS) is a panoramic imaging and spectroscopic survey of an X-ray luminosity-selected sample of 21 clusters of galaxies at 0.07 < z < 0.16. Charge-coupled device (CCD) imaging was obtained in B and R of typically 2 degrees wide regions centred on the 21 clusters, and the galaxy sample selected from the imaging is being used for an on-going spectroscopic survey of the clusters with the 2dF spectrograph on the Anglo-Australian Telescope. This paper presents the reduction of the imaging data and the photometric analysis used in the survey. Based on an overlapping area of 12.3 deg(2) we compare the CCD-based LARCS catalogue with the photographic-based galaxy catalogue used for the input to the 2dF Galaxy Redshift Survey (2dFGRS) from the APM, to the completeness of the GRS/APM catalogue, b(J) = 19.45. This comparison confirms the reliability of the photometry across our mosaics and between the clusters in our survey. This comparison also provides useful information concerning the properties of the GRS/APM. The stellar contamination in the GRS/APM galaxy catalogue is confirmed as around 5-10 per cent, as originally estimated. However, using the superior sensitivity and spatial resolution in the LARCS survey evidence is found for four distinct populations of galaxies that are systematically omitted from the GRS/APM catalogue. The characteristics of the 'missing' galaxy populations are described, reasons for their absence examined and the impact they will have on the conclusions drawn from the 2dF Galaxy Redshift Survey are discussed.
Resumo:
A new method is presented to determine an accurate eigendecomposition of difficult low temperature unimolecular master equation problems. Based on a generalisation of the Nesbet method, the new method is capable of achieving complete spectral resolution of the master equation matrix with relative accuracy in the eigenvectors. The method is applied to a test case of the decomposition of ethane at 300 K from a microcanonical initial population with energy transfer modelled by both Ergodic Collision Theory and the exponential-down model. The fact that quadruple precision (16-byte) arithmetic is required irrespective of the eigensolution method used is demonstrated. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This study was undertaken to establish whether children with myelomeningocele have abnormal kinaesthesia of the hands. Twenty-one children with myelomeningocele and 21 control children, aged between six and 12 years, were involved in the study. The level of kinaesthetic awareness in the hands was measured by examining the child's ability to copy hand positions, using visual cueing and kinaesthetic cueing. Both accuracy and speed of copying hand gestures were assessed. Children with spina bifida were significantly less accurate in achieving hand positions than the control group (chi((1))(2) 22.60, p < 0.001), with 73% of the children with spina bifida achieving accurate replications compared with 87% in the control group. Furthermore, children with myelomeningocele were shown to be slower than the controls (F-(1,F-2810) = 15.49, p < 0.001). The impaired kinaesthetic awareness found in this study is considered to be one of the factors behind the poor hand function observed in children with myelomeningocele.
Resumo:
The isotope composition of Ph is difficult to determine accurately due to the lack of a stable normalisation ratio. Double and triple-spike addition techniques provide one solution and presently yield the most accurate measurements. A number of recent studies have claimed that improved accuracy and precision could also be achieved by multi-collector ICP-MS (MC-ICP-MS) Pb-isotope analysis using the addition of Tl of known isotope composition to Pb samples. In this paper, we verify whether the known isotope composition of Tl can be used for correction of mass discrimination of Pb with an extensive dataset for the NIST standard SRM 981, comparison of MC-ICP-MS with TIMS data, and comparison with three isochrons from different geological environments. When all our NIST SRM 981 data are normalised with one constant Tl-205/Tl-203 of 2.38869, the following averages and reproducibilities were obtained: Pb-207/Pb-206=0.91461+/-18; Pb-208/Ph-206 = 2.1674+/-7; and (PbPh)-Pb-206-Ph-204 = 16.941+/-6. These two sigma standard deviations of the mean correspond to 149, 330, and 374 ppm, respectively. Accuracies relative to triple-spike values are 149, 157, and 52 ppm, respectively, and thus well within uncertainties. The largest component of the uncertainties stems from the Ph data alone and is not caused by differential mass discrimination behaviour of Ph and Tl. In routine operation, variation of sample introduction memory and production of isobaric molecular interferences in the spectrometer's collision cell currently appear to be the ultimate limitation to better reproducibility. Comparative study of five different datasets from actual samples (bullets, international rock standards, carbonates, metamorphic minerals, and sulphide minerals) demonstrates that in most cases geological scatter of the sample exceeds the achieved analytical reproducibility. We observe good agreement between TIMS and MC-ICP-MS data for international rock standards but find that such comparison does not constitute the ultimate. test for the validity of the MC-ICP-MS technique. Two attempted isochrons resulted in geological scatter (in one case small) in excess of analytical reproducibility. However, in one case (leached Great Dyke sulphides) we obtained a true isochron (MSWD = 0.63) age of 2578.3 +/- 0.9 Ma, which is identical to and more precise than a recently published U-Pb zircon age (2579 3 Ma) for a Great Dyke websterite [Earth Planet. Sci. Lett. 180 (2000) 1-12]. Reproducibility of this age by means of an isochron we regard as a robust test of accuracy over a wide dynamic range. We show that reliable and accurate Pb-isotope data can be obtained by careful operation of second-generation MC-ICP magnetic sector mass spectrometers. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This article uses the concept of social positioning to explore the construction of a youth sports club by young people, their parents and coaches. The year-long ethnography of Forest Athletics Club (FAC) identified two athlete positions of Samplers and Beginning Specializers. Four parents’ positions were identified, those of Non-Attenders, Spectators, Helpers and Committed Members. One coach position was the Committed Volunteer. Each of these positions was interdependent. Particular expectations, practices and values were attached to these positions. It is argued that the club operates according to multiple agendas and that FAC is a complex and dynamic social phenomenon that is practised differently by the three groups of key players.
Resumo:
The duration of movements made to intercept moving targets decreases and movement speed increases when interception requires greater temporal precision. Changes in target size and target speed can have the same effect on required temporal precision, but the response to these changes differs: changes in target speed elicit larger changes in response speed. A possible explanation is that people attempt to strike the target in a central zone that does not vary much with variation in physical target size: the effective size of the target is relatively constant over changes in physical size. Three experiments are reported that test this idea. Participants performed two tasks: (1) strike a moving target with a bat moved perpendicular to the path of the target; (2) press on a force transducer when the target was in a location where it could be struck by the bat. Target speed was varied and target size held constant in experiment 1. Target speed and size were co-varied in experiment 2, keeping the required temporal precision constant. Target size was varied and target speed held constant in experiment 3 to give the same temporal precision as experiment 1. Duration of hitting movements decreased and maximum movement speed increased with increases in target speed and/or temporal precision requirements in all experiments. The effects were largest in experiment 1 and smallest in experiment 3. Analysis of a measure of effective target size (standard deviation of strike locations on the target) failed to support the hypothesis that performance differences could be explained in terms of effective size rather than actual physical size. In the pressing task, participants produced greater peak forces and shorter force pulses when the temporal precision required was greater, showing that the response to increasing temporal precision generalizes to different responses. It is concluded that target size and target speed have independent effects on performance.
Resumo:
The use of presence/absence data in wildlife management and biological surveys is widespread. There is a growing interest in quantifying the sources of error associated with these data. We show that false-negative errors (failure to record a species when in fact it is present) can have a significant impact on statistical estimation of habitat models using simulated data. Then we introduce an extension of logistic modeling, the zero-inflated binomial (ZIB) model that permits the estimation of the rate of false-negative errors and the correction of estimates of the probability of occurrence for false-negative errors by using repeated. visits to the same site. Our simulations show that even relatively low rates of false negatives bias statistical estimates of habitat effects. The method with three repeated visits eliminates the bias, but estimates are relatively imprecise. Six repeated visits improve precision of estimates to levels comparable to that achieved with conventional statistics in the absence of false-negative errors In general, when error rates are less than or equal to50% greater efficiency is gained by adding more sites, whereas when error rates are >50% it is better to increase the number of repeated visits. We highlight the flexibility of the method with three case studies, clearly demonstrating the effect of false-negative errors for a range of commonly used survey methods.