291 resultados para Population conservation
em University of Queensland eSpace - Australia
Resumo:
A population of the grassland earless dragon (Tympanocryptis pinguicolla) on the Darling Downs, Queensland, Australia, had been considered extinct until its recent rediscovery. We determined factors affecting grassland earless dragon abundance and prey availability in 3 habitats. Mean dragon body condition and prey numbers were higher in sorghum than grasslands and grass verges. Poisson regression analyses indicated that the dragon numbers were 10 times higher in sorghum, and that this may result from differences in prey numbers as well as other habitat conditions. Tracking data indicated selection of open versus closed microhabitat. Sorghum planted in rows provided alternating open and closed microhabitats for optimal thermoregulation conditions. Grasslands and grass verges were more uniformly shaded. Of individuals we tracked in the sorghum stubble, 85.7% used litter as overnight refuges. Litter was abundant in sorghum and sparse in grass habitats. The practices of minimum tillage and resting stubble strips possibly mitigate agricultural impacts on dragons and provide continuous access to suitable habitat. Changes in agricultural practices that affect the habitat suitability will potentially have detrimental impacts on the population. Our data suggest that conservation efforts be focused on maintaining suitability of habitats in crop fields. We recommend monitoring dragon abundance at control and trial sites of any new agricultural practices; this will provide opportunity to modify or stop undesirable practices before adoption by farmers. Conservation agencies may use our data as a baseline for monitoring long-term viability of the population.
Resumo:
Examines empirically the relative influence of the degree of endangerment of wildlife species and their stated likeability on individuals’ willingness to pay (WTP) for their conservation. To do this, it utilises data obtained from the IUCN Red List and likeability and WTP data obtained from two serial surveys of a sample of the Australian public who were requested to assess 24 Australian wildlife species in each of three animal classes: mammals, birds and reptiles. Between the first and second survey, respondents were provided with extra information about the focal species. This information resulted in the clear dominance of endangerment as the major influence on the WTP of respondents for the conservation of the focal wildlife species. Our results throw doubts on the proposition in the literature that the likeability of species is the dominant influence on WTP for conservation of wildlife species. Furthermore, our results suggest that the relationship between WTP for the conservation of wildlife in relation to their population levels may be more complex and different to that suggested in some of the literature on ecological economics.
Resumo:
This paper explores the way in which the stated willingness to pay for the conservation of Asian elephants in Sri Lanka varies with hypothetical variations in their abundance. To do that, it relies on results from a sample of residents of Colombo. The willingness to pay function is found to be unusual. It increases at an increasing rate for hypothetical reductions in the elephant population compared to its current level (a level that makes the Asian elephant endangered) and also increases at a decreasing rate for increases in this population from its current level. Rational explanations are given for this relationship. The relationship is, however, at odds with relationships suggested in some of the literature for total economic value as a function of the abundance of a wildlife species. It is suggested that willingness to pay for conservation of a species rationally includes a strategic element and may not always measure the total economic value of a species. Nevertheless, willingness to pay is still policy relevant in such cases.
Resumo:
1. Establishing biological control agents in the field is a major step in any classical biocontrol programme, yet there are few general guidelines to help the practitioner decide what factors might enhance the establishment of such agents. 2. A stochastic dynamic programming (SDP) approach, linked to a metapopulation model, was used to find optimal release strategies (number and size of releases), given constraints on time and the number of biocontrol agents available. By modelling within a decision-making framework we derived rules of thumb that will enable biocontrol workers to choose between management options, depending on the current state of the system. 3. When there are few well-established sites, making a few large releases is the optimal strategy. For other states of the system, the optimal strategy ranges from a few large releases, through a mixed strategy (a variety of release sizes), to many small releases, as the probability of establishment of smaller inocula increases. 4. Given that the probability of establishment is rarely a known entity, we also strongly recommend a mixed strategy in the early stages of a release programme, to accelerate learning and improve the chances of finding the optimal approach.
Resumo:
1. The spatial and temporal distribution of eggs laid by herbivorous insects is a crucial component of herbivore population stability, as it influences overall mortality within the population. Thus an ecologist studying populations of an endangered butterfly can do little to increase its numbers through habitat management without knowledge of its egg-laying patterns across individual host-plants under different habitat management regimes. At the other end of the spectrum, a knowledge of egg-laying behaviour can do much to control pest outbreaks by disrupting egg distributions that lead to rapid population growth. 2. The distribution of egg batches of the processionary caterpillar Ochrogaster lunifer on acacia trees was monitored in 21 habitats during 2 years in coastal Australia. The presence of egg batches on acacias was affected by host-tree 'quality' (tree size and foliar chemistry that led to increased caterpillar survival) and host-tree 'apparency' (the amount of vegetation surrounding host-trees). 3. In open homogeneous habitats, more egg batches were laid on high-quality trees, increasing potential population growth. In diverse mixed-species habitats, more egg batches were laid on low-quality highly apparent trees, reducing population growth and so reducing the potential for unstable population dynamics. The aggregation of batches on small apparent trees in diverse habitats led to outbreaks on these trees year after year, even when population levels were low, while site-wide outbreaks were rare. 4. These results predict that diverse habitats with mixed plant species should increase insect aggregation and increase population stability. In contrast, in open disturbed habitats or in regular plantations, where egg batches are more evenly distributed across high-quality hosts, populations should be more unstable, with site-wide outbreaks and extinctions being more common. 5. Mixed planting should be used on habitat regeneration sites to increase the population stability of immigrating or reintroduced insect species. Mixed planting also increases the diversity of resources, leading to higher herbivore species richness. With regard to the conservation of single species, different practices of habitat management will need to be employed depending on whether a project is concerned with methods of rapidly increasing the abundance of an endangered insect or concerned with the maintenance of a stable, established insect population that is perhaps endemic to an area. Suggestions for habitat management in these different cases are discussed. 6. Finally, intercropping can be highly effective in reducing pest outbreaks, although the economic gains of reduced pest attack may be outweighed by reduced crop yields in mixed-crop systems.
Resumo:
Regional and national surveys provide a broadscale description of the koala's present distribution in Australia. A detailed understanding of its distribution is precluded, however, by past and continuing land clearing across large parts of the koala's range. Koala population density increased in some regions during the late 1800s and then declined dramatically in the early 1900s. The decline was associated with habitat loss, hunting, disease, fire, and drought. Declines are continuing in Queensland and New South Wales. In contrast, dense koala populations in habitat isolates in Victoria and South Australia are managed to reduce population size and browse damage. Current understanding of koala distribution and abundance suggests that the species does not meet Australian criteria as endangered or vulnerable fauna. Its conservation status needs to be reviewed, however, in light of the extensive land clearing in New South Wales and Queensland since the last (1980s) broadscale surveys. Consequently, we recommend that broadacre clearing by curtailed in New South Wales and Queensland and that regular, comprehensive, standardized, national koala surveys be undertaken. Given the fragmentation of koala habitat and regional differences in the status of the koala, we recommended that studies on regional variation in the koala be intensified and that koala ecology in fragmented and naturally restricted habitats be developed. More generally, the National Koala Conservation Strategy should be implemented.
Resumo:
1. Although population viability analysis (PVA) is widely employed, forecasts from PVA models are rarely tested. This study in a fragmented forest in southern Australia contrasted field data on patch occupancy and abundance for the arboreal marsupial greater glider Petauroides volans with predictions from a generic spatially explicit PVA model. This work represents one of the first landscape-scale tests of its type. 2. Initially we contrasted field data from a set of eucalypt forest patches totalling 437 ha with a naive null model in which forecasts of patch occupancy were made, assuming no fragmentation effects and based simply on remnant area and measured densities derived from nearby unfragmented forest. The naive null model predicted an average total of approximately 170 greater gliders, considerably greater than the true count (n = 81). 3. Congruence was examined between field data and predictions from PVA under several metapopulation modelling scenarios. The metapopulation models performed better than the naive null model. Logistic regression showed highly significant positive relationships between predicted and actual patch occupancy for the four scenarios (P = 0.001-0.006). When the model-derived probability of patch occupancy was high (0.50-0.75, 0.75-1.00), there was greater congruence between actual patch occupancy and the predicted probability of occupancy. 4. For many patches, probability distribution functions indicated that model predictions for animal abundance in a given patch were not outside those expected by chance. However, for some patches the model either substantially over-predicted or under-predicted actual abundance. Some important processes, such as inter-patch dispersal, that influence the distribution and abundance of the greater glider may not have been adequately modelled. 5. Additional landscape-scale tests of PVA models, on a wider range of species, are required to assess further predictions made using these tools. This will help determine those taxa for which predictions are and are not accurate and give insights for improving models for applied conservation management.
Resumo:
Realistic time frames in which management decisions are made often preclude the completion of the detailed analyses necessary for conservation planning. Under these circumstances, efficient alternatives may assist in approximating the results of more thorough studies that require extensive resources and time. We outline a set of concepts and formulas that may be used in lieu of detailed population viability analyses and habitat modeling exercises to estimate the protected areas required to provide desirable conservation outcomes for a suite of threatened plant species. We used expert judgment of parameters and assessment of a population size that results in a specified quasiextinction risk based on simple dynamic models The area required to support a population of this size is adjusted to take into account deterministic and stochastic human influences, including small-scale disturbance deterministic trends such as habitat loss, and changes in population density through processes such as predation and competition. We set targets for different disturbance regimes and geographic regions. We applied our methods to Banksia cuneata, Boronia keysii, and Parsonsia dorrigoensis, resulting in target areas for conservation of 1102, 733, and 1084 ha, respectively. These results provide guidance on target areas and priorities for conservation strategies.
Willingness to pay for conservation of the Asian elephant in Sri Lanka: A contingent valuation study
Resumo:
Results from a CVM survey of willingness to pay for the conservation of the Asian elephant of a sample of urban residents in three selected housing schemes in Colombo, the capital of Sri Lanka, are reported. Face– to–face surveys were conducted using an interview schedule. A non-linear logit regression model was constructed to analyse the respondents’ responses for the payment principle questions and to identify the factors that influence their responses. We investigate whether urban residents’ WTP for the conservation of elephants is sufficient to compensate farmers for the damage caused by elephants, and consequently to raise farmers’ tolerance of the presence of elephants on the farming fields. We find that beneficiaries (the urban residents) could compensate losers (the farmers in the HEC affected areas) and be better off than in the absence of elephants in Sri Lanka. This suggests that there is a strong economic case for the conservation of the wild elephant population in Sri Lanka. However, we have insufficient data to determine Sri Lanka’s optimal elephant population in the Kaldor-Hicks sense.
Resumo:
Using a species’ population to measure its conservation status, this note explores how an increase in knowledge about this status would change the public’s willingness to donate funds for its conservation. This is done on the basis that the relationship between the level of donations and a species’ conservation status satisfies stated general mathematical properties. This level of donation increases, on average, with greater knowledge of a species’ conservation status if it is endangered, but falls if it is secure. Game theory and other theory is used to show how exaggerating the degree of endangerment of a species can be counterproductive for conservation.
Resumo:
Managing hawksbill turtle populations for use and conservation requires (i) adequate scientific understanding of their population status and dynamics and (ii) consideration of the public’s attitudes to this species. This study employs experimental surveys to assess the Australian public’s attitudes towards the hawksbill turtle, their knowledge of it, their views about its sustainable commercial harvesting, and their support and financial contribution for the species’ conservation. Contingent valuation reveals that the Australian public’s willingness to contribute to the conservation of the hawksbill turtle is high even in comparison to threatened Australian bird and mammal fauna. Most of this stated contribution is based on the intrinsic (non-use) value associated with the hawksbill turtle. It seems that the Australian public will only accept its harvesting if the sustainability of this is assured and its population is more secure. The CITES categorisation of the hawksbill as an Appendix I species hampers the development of techniques for its sustainable use.
Resumo:
A recent study by Brook ef al. empirically tested the performance of population viability analysis (PVA) using data from 21 populations across a wide range of species. The study concluded that PVAs are good at predicting the future dynamics of populations. We suggest that this conclusion is a result of a bias in the studies that Brook et al, included in their analyses, We present arguments that PVAs can only be accurate at predicting extinction probabilities if data are extensive and reliable, and if the distribution of vital rates between individuals and years can be assumed stationary in the future, or if any changes can be accurately predicted. In particular, we note th at although catastrophes are likely to have precipitated many extinctions, estimates of the probability of catastrophes are unreliable.
Resumo:
The bridled nailtail wallaby is restricted to one locality in central Queensland, Australia. The population declined severely during a major drought between 1991 and 1995. We investigated age-specific covariates of survival and proximate causes of mortality from 1994 to 1997, using mark-recapture and radio-tagging techniques at two study sites. Using a matrix population model, we also modelled the effect of drought on age-specific survival and the intrinsic rate of population increase,;,. The only significant covariate of survival for adults was a measure of health unrelated to drought. Rainfall, food, predator activity, year, sex and habitat were not associated with variation in adult survival. Juvenile survival was negatively affected by drought, and predation was the proximate cause of most juvenile deaths. The matrix projection model showed that the observed juvenile survivorship during the drought was low enough to have produced a population decline, although fecundity and survival of other age classes was high throughout the study. (C) 2001 Elsevier Science Ltd. All rights reserved.