16 resultados para Polyester de Salen

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal analysis methods (differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical thermal analysis) were used to characterize the nature of polyester-melamine coating matrices prepared under nonisothermal, high-temperature, rapid-cure conditions. The results were interpreted in terms of the formation of two interpenetrating networks with different glass-transition temperatures (a cocondensed polyester-melamine network and a self-condensed melamine-melamine network), a phenomenon not generally seen in chemically similar, isothermally cured matrices. The self-condensed network manifested at high melamine levels, but the relative concentrations of the two networks were critically dependent on the cure conditions. The optimal cure (defined in terms of the attainment of a peak metal temperature) was achieved at different oven temperatures and different oven dwell times, and so the actual energy absorbed varied over a wide range. Careful control of the energy absorption, by the selection of appropriate cure conditions, controlled the relative concentrations of the two networks and, therefore, the flexibility and hardness of the resultant coatings. (C) 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Cbem 41: 1603-1621, 2003.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of experimental cure parameters on the diffusion of reactive species in polyester-melamine thermoset coatings during curing has been investigated with X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared. The diffusion of melamine plays a vital role in the curing process and, therefore, in the ultimate properties of coatings. At a low (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of postcure high energy (gamma), ultraviolet (UV) and thermal treatment on the properties of polyester-melamine clearcoats of a range of compositions has been investigated. Two initial cure conditions were used, of which one was '' optimally '' cured and the other undercured. It was found that postcure treatments, particularly gamma and UV, led to coatings of similar mechanical and thermal properties irrespective of initial cure, although the change in properties on postcure treatment was greater for the under-cured samples. The results were interpreted in terms of the effect of the treatments on the structure of the crosslinked matrices. The study suggests the possibility of the development of a dual-cure process for polyester-melamines, whereby cure optimization and property improvement can be achieved. This could also be used to '' correct '' for small variations in thermal cure levels brought about by adventitious online fluctuations in cure oven conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maleic anhydride (MA) and dicumyl peroxide (DCP) were used as crosslinking agent and initiator respectively for blending starch and a biodegradable synthetic aliphatic polyester using reactive extrusion. Blends were characterized using dynamic mechanical and thermal analysis (DMTA). Optical micrographs of the blends revealed that in the optimized blend, starch was evenly dispersed in the polymer matrix. Optimized blends exhibited better tensile properties than the uncompatibilized blends. Xray photoelectron spectroscopy supported the proposed structure for the starch-polyester complex. Variation in the compositions of crosslinking agent and initiator had an impact on the properties and color of the blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of starch and a biodegradable polyester, produced by an extrusion process, which included a cross-linker/compatibilizer (maleic anhydride) and an initiator (dicumyl peroxide), were studied by infrared (IR) microspectroscopy using an attenuated total reflectance (ATR) objective. Extruded material, which had a diameter of about 3 mm, was sectioned and embedded in epoxy resin prior to IR analysis. Spectra were collected in a grid pattern across the sectioned face of the sample. Measurement of various band parameters from the spectra allowed IR maps to be constructed containing semi-quantitative information about the distribution of blend components. These maps showed the quality of the blend on a microscopic scale and showed how it varied with different concentrations of compatibilizer and initiator. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermosetting blends of an aliphatic epoxy resin and a hydroxyl-functionalized hyperbranched polymer (HBP), aliphatic hyperbranched polyester Boltorn H40, were prepared using 4,4'-diaminodiphenylmethane (DDM) as the curing agent. The phase behavior and morphology of the DDM-cured epoxy/HBP blends with HBP content up to 40 wt% were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The cured epoxy/HBP blends are immiscible and exhibit two separate glass transitions, as revealed by DMA. The SEM observation showed that there exist two phases in the cured blends, which is an epoxy-rich phase and an HBP-rich phase, which is responsible for the two separate glass transitions. The phase morphology was observed to be dependent on the blend composition. For the blends with HBP content up to 10 wt%, discrete HBP domains are dispersed in the continuous cured epoxy matrix, whereas the cured blend with 40 wt% HBP exhibits a combined morphology of connected globules and bicominuous phase structure. Porous epoxy thermosets with continuous open structures on the order of 100-300 nm were formed after the HBP-rich phase was extracted with solvent from the cured blend with 40 wt% HBP. The DSC study showed that the curing rate is not obviously affected in the epoxy/HBP blends with HBP content up to 40 wt %. The activation energy values obtained are not remarkably changed in the blends; the addition of HBP to epoxy resin thus does not change the mechanism of cure reaction of epoxy resin with DDM. (c) 2006 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical structure, synthesis, morphology, and properties of polyurethane elastomers are briefly discussed. The current understanding of the effect of chemical structure and the associated morphology on the stability of polyurethanes in the biological environments is reviewed. The degradation of conventional polyurethanes appears as surface or deep cracking, stiffening, and deterioration of mechanical properties, such as flex-fatigue resistance. Polyester and poly( tetramethylene oxide) based polyurethanes degrade by hydrolytic and oxidative degradation of ester and ether functional groups, respectively. The recent approaches to develop polyurethanes with improved long-term biostability are based on developing novel polyether, hydrocarbon, polycarbonate, and siloxane macrodiols to replace degradation-prone polyester and polyether macrodiols in polyurethane formulations. The new approaches are discussed with respect to synthesis, properties and biostability based on reported in vivo studies. Among the newly developed materials, siloxane-based polyurethanes have exhibited excellent biostability and are expected to find many applications in biomedical implants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermosetting blends of a biodegradable poly(ethylene glycol)-type epoxy resin (PEG-ER) and poly(epsilon-caprolactone) (PCL) were prepared via an in situ curing reaction of poly(ethylene glycol) diglycidyl ether (PEGDGE) and maleic anhydride (MAH) in the presence of PCL. The miscibility, phase behavior, crystallization, and morphology of these blends were investigated. The uncured PCL/PEGDGE blends were miscible, mainly because of the entropic contribution, as the molecular weight of PEGDGE was very low. The crystallization and melting behavior of both PCL and the poly(ethylene glycol) (PEG) segment of PEGDGE were less affected in the uncured PCL/PEGDGE blends because of the very close glass-transition temperatures of PCL and PEGDGE. However, the cured PCL/PEG-ER blends were immiscible and exhibited two separate glass transitions, as revealed by differential scanning calorimetry and dynamic mechanical analysis. There existed two phases in the cured PCL/PEG-ER blends, that is, a PCL-rich phase and a PEG-ER crosslinked phase composed of an MAH-cured PEGDGE network. The crystallization of PCL was slightly enhanced in the cured blends because of the phase-separated nature; meanwhile, the PEG segment was highly restricted in the crosslinked network and was noncrystallizable in the cured blends. The phase structure and morphology of the cured PCL/PEG-ER blends were examined with scanning electron microscopy; a variety of phase morphologies were observed that depended on the blend composition. (C) 2004 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of modified atmosphere (MA) conditions on the quality of minimally processed pineapple slices were determined. Commercial pineapple slice packs sealed with 40 pm thick polyester film were kept at 4.5 degrees C for 14 d. The oxygen transmission rate of the film was 23 ml m(-2) day(-1) atm(-1) (at 25 degrees C, 75% RH). In-built atmospheres and the quality of the products were determined. O-2 concentrations within the packs stabilised at 2%, while CO2 concentrations increased to 70% by day 14. The high CO2 level suggested an inappropriate lidding film permeability for the product, and hence affected its quality. Three batches of pineapple slices were packed in the laboratory using lidding films with oxygen transmission rate of 75, 2790 or 5000 ml m(-2) day(-1) atm(-1) (at 23 degrees C, 0% RH). Headspace atmospheres from laboratory-packed pineapple slices suggested an optimum equilibrium modified atmosphere of ca. 2% O-2 and 15% CO2. Respiration data from the laboratory-prepared packs were pooled together and used to develop a correlation model relating respiration rates to O-2 and CO2 concentrations. The model showed a decrease in respiration rate with decreasing O-2 and increasing CO2 concentrations. Respiration rate stabilised at 2% 02 and 10% CO2. The high concentrations of CO2 observed in the commercial packs did not fit the range in the respiration model. The model could aid in selection of MA conditions for minimally processed pineapple fruit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials.