22 resultados para Polyatomic interference
em University of Queensland eSpace - Australia
Resumo:
We consider the effect of quantum interference on population distribution and photon statistics of a cavity field interacting with dressed states of a strongly driven three-level atom. We analyse three coupling configurations of the cavity field to the driven atom, with the cavity frequency tuned to the outer Rabi sideband, the inner Rabi sideband and the central frequency of the 'singly dressed' three-level atom. The quantum doubly dressed states for each configuration are identified and the population distribution and photon statistics are interpreted in terms of transitions among these dressed states and their populations. We find that the population distribution depends strongly on quantum interference and the cavity damping. For the cavity field tuned to the outer or inner Rabi sidebands the cavity damping induces transitions between the dressed states which are forbidden for the ordinary spontaneous emission. Moreover, we find that in the case of the cavity field coupled to the inner Rabi sideband the population distribution is almost Poissonian with a large average number of photons that can be controlled by quantum interference. This system can be considered as a one-atom dressed-state laser with controlled intensity.
Resumo:
It is shown that variance-balanced designs can be obtained from Type I orthogonal arrays for many general models with two kinds of treatment effects, including ones for interference, with general dependence structures. These designs can be used to obtain optimal and efficient designs. Some examples and design comparisons are given. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
This paper is concerned with assessing the interference rejection capabilities of linear and circular array of dipoles that can be part of a base station of a code-division multiple-access cellular communication system. The performance criteria for signal-to-interference ratio (SIR) improvement employed in this paper is the spatial interference suppression coefficient. We first derive an expression for this figure of merit and then analyze and compare the SIR performance of the two types of arrays. For a linear array, we quantitatively assess the degradation in SIR performance, as we move from array broadside to array end-fire direction. In addition, the effect of mutual coupling is taken into account.
Resumo:
Attention difficulties and poor balance are both common sequel following a brain injury. This study aimed to determine whether brain injured adults had greater difficulty than controls in performing a basic balance task while concurrently completing several different cognitive tasks varying in visuo-spatial attentional load and complexity. Twenty brain injured adults and 20 age-, sex- and education level-matched controls performed a balance-only task (step stance held for 30s), five cognitive-only tasks (simple and complex non-spatial, visuo-spatial, and a control articulation task), and both together (dual tasks). Brain injured adults showed a greater centre of pressure (COP) excursion and velocity in all conditions than controls. Brain injured adults also demonstrated greater interference with balance when concurrently performing two cognitive tasks than control subjects. These were the control articulation and the simple non-spatial task. It is likely that distractibility during these simple tasks contributed to an increase in COP motion and interference with postural stability in stance. Performing visuo-spatial tasks concurrently with the balance task did not result in any change in COP motion. Dual task interference in this group is thus unlikely to be due to structural interference. Similarly, as the more complex tasks did not uniformly result in increased interference, a reduction in attentional capacity in the brain injured population is unlikely to be the primary cause of dual task interference in this group. (C) 2004 Elsevier B.V. All rights reserved.
Simulating quantum interference in a three-level system with perpendicular transition dipole moments
Resumo:
We consider a three-level V-type atomic system with the ground state coupled by a laser field to only one of the excited states, and with the two excited states coupled together by a dc field. Although the dipole moments of the two dipole-allowed transitions are assumed perpendicular, we demonstrate that this system emulates to a large degree a three-level system with parallel dipole moments-the latter being a system that exhibits quantum interference and displays a number of interesting features. As examples, we show that the system can produce extremely large values for the intensity-intensity correlation function, and that its resonance fluorescence spectrum can display ultranarrow lines. The dressed states for this system are identified, and the spectral features are interpreted in terms of transitions among these dressed states. We also show that this system is capable of exhibiting considerable squeezing.
Resumo:
AIM: To investigate the biological features of A549 cells in which epidermal growth factor (EGF) receptors expression were suppressed by RNA interference (RNAi). METHODS: A549 cells were transfected using short small interfering RNAs (siRNAs) formulated with Lipofectamine 2000. The EGF receptor numbers were determined by Western blotting and flowcytometry. The antiproliferative effects of sequence specific double stranded RNA (dsRNA) were assessed using cell count, colony assay and scratch assay. The chemosensitivity of transfected cells to cisplatin was measured by MTT. RESULTS: Sequence specific dsRNA-EGFR down-regulated EGF receptor expression dramatically. Compared with the control group, dsRNA-EGFR reduced the cell number by 85.0 %, decreased the colonies by 63.3 %, inhibited the migration by 87.2 %, and increased the sensitivity of A549 to cisplatin by four-fold. CONCLUSION: Sequence specific dsRNA-EGFR were capable of suppressing EGF receptor expression, hence significantly inhibiting cellular proliferation and motility, and enhancing chemosensitivity of A549 cells to cisplatin. The successful application of dsRNA-EGFR for inhibition of proliferation in EGF receptor overexpressing cells can help extend the list of available therapeutic modalities in the treatment of non-small-cell lung carcinoma (NSCLC).
Resumo:
Targeted inhibition of oncogenes in tumor cells is a rational approach toward the development of cancer therapies based on RNA interference (RNAi). Tumors caused by human papillomavirus (HPV) infection are an ideal model system for RNAi-based cancer therapies because the oncogenes that cause cervical cancer, E6 and E7, are expressed only in cancerous cells. We investigated whether targeting HPV E6 and E7 oncogenes yields cancer cells more sensitive to chemotherapy by cisplatin, the chemotherapeutic agent currently used for the treatment of advanced cervical cancer. We have designed siRNAs directed against the HPV E6 oncogene that simultaneously targets both E6 and E7, which results in an 80% reduction in E7 protein and reactivation of the p53 pathway. The loss of E6 and E7 resulted in a reduction in cellular viability concurrent with the induction of cellular senescence. Interference was specific in that no effect on HPV-negative cells was observed. We demonstrate that RNAi against E6 and E7 oncogenes enhances the chemotherapeutic effect of cisplatin in HeLa cells. The IC50 for HeLa cells treated with cisplatin was 9.4 mu M, but after the addition of a lentivirus-delivered shRNA against E6, the IC50 was reduced almost 4-fold to 2.4 mu M. We also observed a decrease in E7 expression with a concurrent increase in p53 protein levels upon cotreatment with shRNA and cisplatin over that seen with individual treatment alone. Our results provide strong evidence that loss of E6 and E7 results in increased sensitivity to cisplatin, probably because of increased p53 levels.
Resumo:
Pharmacologists have generally been prejudiced against prostanoids, uncritically accepting their suppression as desirable therapy, especially for ‘quick-fix’ analgesia. This myopic perception for a long time ignored (a) the essentiality of prostanoid precursors in nutrition, (b) the physiological protective functions of natural prostaglandins (PGs) (vasculature, stomach, kidney), (c) resolution of inflammation after the expression of COX-2 and (d) increasing therapeutic use of either synthetic PGs (for erectile dysfunction, opthalmic disorders, inducing parturition, etc) or their natural precursors, e.g., ω3-rich polyunsaturated oils, to treat arthritis. Experimental studies in rats have indicated that prostaglandins (E series) are (i) useful, perhaps auto-regulators of established immunoreactivity and (ii) able to amplify (or even induce) anti-inflammatory activity with other agents. Furthermore, anti-prostanoid therapy (APT) can be arthritigenic!!, interfering with the acquisition of tolerance to some arthritigens. For patients with rheumatoid arthritis this additional side-effect of APT, barely recognised to date, may actually perpetuate their arthritis by impairing prostanoid-mediated remission processes. Hopefully, recent adverse publicity about COX-2 inhibitory drugs might stimulate serious re-assessment of some traditional anti-inflammatory therapies with low APT activity for the management of both acute pain (non-addictive cannabinoids, celery seed, etc.) and chronic inflammation, e.g., Lyprinol® (a mussel lipid extract).
Resumo:
A phased-array antenna with switched-beam elements used to combat interference in an indoor wireless communication system is described. The array uses I-bit phase shifters applied to its elements in order to point its main beam in a desired direction and internal switching of elements in order to form nulls towards interference. The array's capability of suppressing interference is verified by studying its radiation patterns and by performing interference-rejection experiments in an indoor multipath environment. (c) 2005 Wiley Periodicals, Inc.
The effects of task complexity and practice on dual-task interference in visuospatial working memory
Resumo:
Although the n-back task has been widely applied to neuroimagery investigations of working memory (WM), the role of practice effects on behavioural performance of this task has not yet been investigated. The current study aimed to investigate the effects of task complexity and familiarity on the n-back task. Seventy-seven participants (39 male, 38 female) completed a visuospatial n-back task four times, twice in two testing sessions separated by a week. Participants were required to remember either the first, second or third (n-back) most recent letter positions in a continuous sequence and to indicate whether the current item matched or did not match the remembered position. A control task, with no working memory requirements required participants to match to a predetermined stimulus position. In both testing sessions, reaction time (RT) and error rate increased with increasing WM load. An exponential slope for RTs in the first session indicated dual-task interference at the 3-back level. However, a linear slope in the second session indicated a reduction of dual-task interference. Attenuation of interference in the second session suggested a reduction in executive demands of the task with practice. This suggested that practice effects occur within the n-back ask and need to be controlled for in future neuroimagery research using the task.
Resumo:
Background: Voluntary limb movements are associated with involuntary and automatic postural adjustments of the trunk muscles. These postural adjustments occur prior to movement and prevent unwanted perturbation of the trunk. In low back pain, postural adjustments of the trunk muscles are altered such that the deep trunk muscles are consistently delayed and the superficial trunk muscles are sometimes augmented. This alteration of postural adjustments may reflect disruption of normal postural control imparted by reduced central nervous system resources available during pain, so-called pain interference, or reflect adoption of an alternate postural adjustment strategy. Methods: We aimed to clarify this by recording electromyographic activity of the upper (obliquus extemus) and lower (transversus abdominis/obliquus internus) abdominal muscles during voluntary arm movements that were coupled with painful cutaneous stimulation at the low back. If the effect of pain on postural adjustments is caused by pain interference, it should be greatest at the onset of the stimulus, should habituate with repeated exposure, and be absent immediately when the threat of pain is removed. Sixteen patients performed 30 forward movements of the right arm in response to a visual cue (control). Seventy trials were then conducted in which arm movement was coupled with pain (pain trials) and then a further 70 trials were conducted without the pain stimulus (no pain trials). Results: There was a gradual and increasing delay of transversus abdominis/obliquus internus electromyograph and augmentation of obliquus externus during the pain trials, both of which gradually returned to control values during the no pain trials. Conclusion: The results suggest that altered postural adjustments of the trunk muscles during pain are not caused by pain interference but are likely to reflect development and adoption of an alternate postural adjustment strategy, which may serve to limit the amplitude and velocity of trunk excursion caused by arm movement.
Resumo:
Comparative studies of autonomic and somatic reflexes, such as cardiac defense and motor startle, are rare. However, examination of the pattern of covariation, independence, or interference among physiological reflexes may help to clarify their functional significance and elucidate their complex modulation by psychological factors. Here we report the results of a study that examined the pattern of interference of eye-blink startle on subsequent cardiac defense. Participants were 63 students (31 women) distributed into three groups according to the sensory modality of the eliciting stimulus during the startle trials: acoustic high intensity (105 dB), acoustic low intensity (65 dB), and visual modality. Startle trials consisted of 12 presentations of the eliciting stimulus with a duration of 50 ms, instantaneous risetime, and a variable inter-stimulus interval of 16 – 20 s.Defense trials began 20 s after the last startle trial and consisted, for all groups, of 3 presentations of the high intensity acoustic stimulus with a duration of 500 ms and an inter-stimulus interval of 215 s. Results showed a clear interference of the startle trials on the subsequent defense trials when both types of trials shared identical sensory modality (acoustic) independently of intensity: the expected pattern of cardiac defense in the first trial only appeared in the visual modality. Similar interference effects were observed in the skin conductance response. Subjective reactivity to the defense stimulus did not detect differences between conditions.
Resumo:
RNA interference (RNAi) is the latest new technology in the field of genetic medicine in which specific genes can be turned off, or silenced, so as to affect a therapeutic outcome. It can be highly specific, works in the nanomolar range and is far more effective than the antisense approaches popular 10-15 years ago. Here we review the field and explore the potential role of RNAi in cancer therapy, highlighting recent progress and examining the hurdles that must be overcome before this promising technology is ready for clinical use. (C) 2006 Prous Science. All rights reserved.