12 resultados para Polyaniline Composites (PAN)
em University of Queensland eSpace - Australia
Resumo:
Two polymer-montmorillonite (MMT) nanocomposites have been synthesized by in situ intercalative polymerization. The styrene monomer is intercalated into the interlayer space of organically modified MMT, a layered clay mineral. Upon the intercalation, the complex is subsequently polymerized in the confinement environment of the interlayer space with a free radical initiator, 2,2-azobis isobutyronitrile. The aniline monomer is also intercalated and then polymerized within the interlayer space of sodium- and copper-MMT initiated by ammonium peroxodisulphate and interlayer copper cations respectively. X-ray diffraction indicates that the MMT layers are completely dispersed in the polystyrene matrix and an exfoliated structure has been obtained. The resulting polyaniline-MMT nanocomposites show a highly ordered structure of a single polyaniline layer stacked with the MMT layers. Fourier transform infrared spectra further confirm the intercalation and formation of both polymer-MMT nanocomposites.
Resumo:
This study quantified the release of monomers from polymerized specimens of four commercially available resin composites and one glass ionomer cement immersed in water:ethanol solutions. Individual standard curves were prepared from five monomers: (1) triethylene glycol dimethacrylate (TEGDMA), (2) 2-hydroxy-ethyl methacrylate (HEMA), (3) urethane dimethacrylate (UDMA), (4) bisphenol A glycidyl dimethacrylate (BISGMA), and (5) bisphenol A. The concentration of the monomers was determined at Days 1, 7, 30, and 90 with the use of electrospray ionization/mass spectrometry. Data were expressed in mean mumol per mm(2) surface area of specimen and analyzed with Scheffe's test (P < 0.05). The following monomers were found in water: monomers (1) and (2) from Delton sealant, monomer (5) from ScotchBond Multipurpose Adhesive and Delton sealant, monomer (3) from Definite and monomer (4) from Fuji II LC, ScotchBond Multipurpose Adhesive, Synergy and Definite. All these monomers increased in concentration over time, with the exception of monomer (1) from Delton sealant. Monomers (3) and (5) were found in extracts of materials despite their absence from the manufacturer's published composition. All monomers were released in significantly higher concentrations in water:ethanol solutions than in water. The greatest release of monomers occurred in the first day. The effect of the measured concentrations of monomers (1-5) on human genes, cells, or tissues needs to be considered with the use of a biological model. (C) 2002 Wiley Periodicals, Inc.
Resumo:
We report a simple one pot process for the preparation of lead sulfide (PbS) nanocrystals in the conjugated polymer poly (2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV), and we demonstrate electronic coupling between the two components.
Resumo:
This investigation focused on the finite element analyses of elastic and plastic properties of aluminium/alumina composite materials with ultrafine microstructure. The commonly used unit cell model was used to predict the elastic properties. By combining the unit cell model with an indentation model, coupled with experimental indentation measurements, the plastic properties of the composites and the associated strengthening mechanism within the metal matrix material were investigated. The grain size of the matrix material was found to be an important factor influencing the mechanical properties of the composites studied. (C) 1997 Elsevier Science S.A.
Resumo:
A series of metal-matrix composites were formed by extrusion freeform, fabrication of a sinterable aluminum alloy in combination with silicon carbide particles and whiskers, carbon fibers, alumina particles, and hollow flyash cenospheres. Silicon carbide particles were most successful in that the composites retained high density with up to 20 vol% of reinforcement and the strength approximately doubles over the strength of the metal matrix alone. Comparison with simple models suggests that this unexpectedly high degree of reinforcement can be attributed to the concentration of small silicon carbide particles around the larger metal powder. This fabrication method also allows composites to be formed with hollow spheres that cannot be formed by other powder or melt methods.
Resumo:
Thermally stable composite nanostructures of titanium dioxide (anatase) and silicate nanoparticles were prepared from Laponite clay and a sol of titanium hydrate in the presence of poly(ethylene oxide) (PEO) surfactants. Laponite is a synthetic clay that readily disperses in water and exists as exfoliated silicate layers of about 1-nm thick in transparent dispersions of high pH. The acidic sol solution reacts with the clay platelets and leaches out most of the magnesium in the clay, while the sol particles hydrolyze further due to the high pH of the clay dispersion. As a result, larger precursors of TiO2 nanoparticles form and condense on the fragmentized pieces of the leached silicate. Introducing PEO surfactants into the synthesis can significantly increase the porosity and surface area of the composite solids. The TiO2 exists as anatase nanoparticles that are separated by silicate fragments and voids such that they are accessible to organic molecules. The size of the anatase particle can be tailored by manipulating the experimental parameters at various synthesis stages. Therefore, we can design and engineer composite nanostructures to achieve better performance. The composite solids exhibit superior properties as photocatalysts for the degradation of Rhodamine 6G in aqueous solution.