3 resultados para Pockenviren, Vaccinia, MVA, Apoptose
em University of Queensland eSpace - Australia
Resumo:
Although the importance of CD4(+) T cell responses to human cytonnegalovirus (HCMV) has recently been recognized in transplant and immunosuppressed patients, the precise specificity and nature of this response has remained largely unresolved. In the present study we have isolated CD4(+) CTL which recognize epitopes from HCMV glycoproteins gB and gH in association with two different HLA-DR antigens, DRA1*0101/DRB1*0701 (DR7) and DRA1*0101/DRB1*1101 (DR11). Comparison of amino acid sequences of HICMV isolates revealed that the gB and gH epitope sequences recognized by human CD4(+) T cells were not only conserved in clinical isolates from HCMV but also in CMV isolates from higher primates (chimpanzee, rhesus and baboon). Interestingly, these epitope sequences from chimpanzee, rhesus and baboon CMV are efficiently recognized by human CD4(+) CTL. More importantly, we show that gB-specific T cells from humans can also efficiently lyse pepticle-sensitized Patr-DR7(+) cells from chimpanzees. These findings suggest that conserved gB and gH epitopes should be considered while designing a prophylactic vaccine against HCMV. In addition, they also provide a functional basis for the conservation of MHC class 11 lineages between humans and Old World primates and open the possibility for the use of such primate models in vaccine development against HCMV.
Resumo:
Vaccine-induced CD8 T cells directed to tumourspecific antigens are recognised as important components of protective and therapeutic immunity against tumours. Where tumour antigens have pathogenic potential or where immunogenic epitopes are lost from tumours, development of subunit vaccines consisting of multiple individual epitopes is an attractive alternative to immunising with whole tumour antigen. In the present study we investigate the efficacy of two DNA-based multiepitope('polytope') vaccines containing murine (H-2(b)) and human (HLA-A* 0201)-restricted epitopes of the E7 oncoprotein of human papillomavirus type 16, in eliciting tumour-protective cytotoxic T-lymphocyte (CTL) responses. We show that the first of these polytopes elicited powerful effector CTL responses ( measured by IFN-gamma ELISpot) and long-lived memory CTL responses ( measured by functional CTL assay and tetramers) in immunised mice. The responses could be boosted by immunisation with a recombinant vaccinia virus expressing the polytope. Responses induced by immunisation with polytope DNA alone partially protected against infection with recombinant vaccinia virus expressing the polytope. Complete protection was afforded against challenge with an E7-expressing tumour, and reduced growth of nascent tumours was observed. A second polytope differing in the exact composition and order of CTL epitopes, and lacking an inserted endoplasmic reticulum targeting sequence and T-helper epitope, induced much poorer CTL responses and failed to protect against tumour challenge. These observations indicate the validity of a DNA polytope vaccine approach to human papillomavirus E7 - associated carcinoma, and underscore the importance of design in polytope vaccine construction.
Resumo:
Virus-like particles (VLPs) are of interest in vaccination, gene therapy and drug delivery, but their potential has yet to be fully realized. This is because existing laboratory processes, when scaled, do not easily give a compositionally and architecturally consistent product. Research suggests that new process routes might ultimately be based on chemical processing by self-assembly, involving the precision manufacture of precursor capsomeres followed by in vitro VLP self-assembly and scale-up to required levels. A synergistic interaction of biomolecular design and bioprocess engineering (i.e. biomolecular engineering) is required if these alternative process routes and, thus, the promise of new VLP products, are to be realized.