4 resultados para Plutonic suite

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Shoemaker impact structure, on the southern margin of the Palaeoproterozoic Earaheedy Basin, with an outer diameter of similar to30 km, consists of two well-defined concentric ring structures surrounding a granitoid basement uplift. The concentric structures, including a ring syncline and a ring anticline, formed in sedimentary rocks of the Earaheedy Group. In addition, aeromagnetic and geological field observations suggest that Shoemaker is a deeply eroded structure. The central 12 km-diameter uplift consists of fractured Archaean basement granitoids of syenitic composition (Teague Granite). Shock-metamorphic features include shatter cones in sedimentary rocks and planar deformation features in quartz crystals of the Teague Granite. Universal-stage analysis of 51 sets of planar deformation features in 18 quartz grains indicate dominance of sets parallel to omega (10 (1) over bar3}, but absence of sets parallel to pi (10 (1) over bar2}, implying peak shock pressures in the range of 10-20 GPa for the analysed sample. Geophysical characteristics of the structure include a -100 mus(-2) gravity anomaly coincident with the central uplift and positive circular trends in both magnetic and gravity correlating with the inner ring syncline and outer ring anticline. The Teague Granite is dominated by albite-quartz-K-feldspar with subordinate amounts of alkali pyroxene. The alkali-rich syenitic composition suggests it could either represent a member of the Late Archaean plutonic suite or the product of alkali metasomatism related to impact-generated hydrothermal activity. In places, the Teague Granite exhibits partial to pervasive silicification and contains hydrothermal minerals, including amphibole, garnet, sericite and prehnite. Recent isotopic age studies of the Teague Granite suggest an older age limit of ca 1300 Ma (Ar-Ar on K-feldspar) and a younger age limit of ca 568 Ma (K-Ar on illite-smectite). The significance of the K-Ar age of 568 Ma is not clear, and it might represent either hydrothermal activity triggered by impact-related energy or a possible resetting by tectonothermal events in the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A suite of allenic hydrocarbons, previously unknown as a molecular class from insects, has been characterized from several Australian melolonthine scarab beetles. The allenes are represented by the formula CH3(CH2)nCH=.=CH(CH2)(7)CH3 with n being 11-15, 17 and 19, and thus, all have Delta(9,10)-unsaturation. These structures have been confirmed by syntheses and comparisons of spectral and chromatographic properties with those of the natural components. The enantiomers of (+/-)-Delta(9,10)-tricosadiene and Delta(9,10)-pentacosadiene were separable on a modified beta-cyclodextrin column (gas chromatography), and the natural Delta(9,10)-tricosadiene (n = 11) and Delta(9,10)-pentacosadiene (n = 13) were shown to be of >85% ee. Syntheses of nonracemic allenes of known predominating chirality were acquired using both organotin chemistry and sulfonylhydrazine intermediates, and comparisons then demonstrated that the natural allenes were predominantly (R)-configured.