3 resultados para Plasma. Dielectric barrier discharge. Lissajous figures. Optical emission spectroscopy
em University of Queensland eSpace - Australia
Resumo:
Free-piston-driven expansion tubes are capable of generating flaw conditions over a wide range of enthalpies ranging from orbital up to superorbital velocities. Initial optical measurements aimed at investigating the flow in such a facility are presented. Emission studies were used to identify impurities in the how and to investigate spectral regions that are accessible by optical techniques. At moderate enthalpies, it was found that significant radiation resulted from metallic contaminants. At high enthalpies, the spectrum consisted of a number of atomic lines together with a broadband background component indicative of the presence of electrons. The presence of this radiation may limit the applicability of optical techniques that require spectral regions free from the influence of atomic transitions or background radiation. Emission spectroscopy (through Stark broadened hydrogen lines) and two-wavelength holographic interferometry were used to measure the electron number density behind a bow shock on a blunt body at conditions where significant ionization was observed. They yielded average concentrations of (3 +/- 1) x 10(17) cm(-3) from the emission measurements and (3.8 +/- 0.6) x 10(17) cm(-3) from the interferometry.
Resumo:
Hedley er al. (1982) developed what has become the most widely used land modified), phosphorus (P) fractionation technique. It consists of sequential extraction of increasingly less phytoavailable P pools. Extracts are centrifuged at up to 25000 g (RCF) and filtered to 0.45 mu m to ensure that soil is not lost between extractions. In attempting to transfer this method to laboratories with limited facilities, it was considered that access to high-speed centrifuges, and the cost of frequent filtration may prevent adoption of this P fractionation technique. The modified method presented here was developed to simplify methodology, reduce cost, and therefore increase accessibility of P fractionation technology. It provides quantitative recovery of soil between extractions, using low speed centrifugation without filtration. This is achieved by increasing the ionic strength of dilute extracts, through the addition of NaCl, to flocculate clay particles. Addition of NaCl does not change the amount of P extracted. Flocculation with low speed centrifugation produced extracts comparable with those having undergone filtration (0.025 mu m). A malachite green colorimetric method was adopted for inorganic P determination, as this simple manual method provides high sensitivity with negligible interference from other anions. This approach can also be used for total P following digestion, alternatively non-discriminatory methods, such as inductively coupled plasma atomic emission spectroscopy, may be employed.
Resumo:
We measure the spectral properties of a representative sub-sample of 187 quasars, drawn from the Parkes Half-Jansky, Flat-radio-spectrum Sample (PHFS). Quasars with a wide range of rest-frame optical/UV continuum slopes are included in the analysis: their colours range over 2 < B-K < 7. We present composite spectra of red and blue sub-samples of the PHFS quasars. and tabulate their emission line properties. The median Hbeta and [0 111] emission line equivalent widths of the red quasar sub-sample are a factor of ten weaker than those of the blue quasar sub-sample. No significant differences are seen between the equivalent width distributions of the C IV, C III] and Mg 11 lines. Both the colours and the emission line equivalent widths of the red quasars can be explained by the addition of a featureless red synchrotron continuum component to an otherwise normal blue quasar spectrum. The red synchrotron component must have a spectrum at least as red as a power-law of the form F-nu proportional to nu(-2.8). The relative strengths of the blue and red components span two orders of magnitude at rest-frame 500 nm. The blue component is weaker relative to the red component in low optical luminosity sources. This suggests that the fraction of accretion energy going into optical emission from the jet is greater in low luminosity quasars. This correlation between colour and luminosity may be of use in cosmological distance scale work. This synchrotron model does not, however, fit similar to10% of the quasars, which have both red colours and high equivalent width emission lines. We hypothesise that these red, strong-lined quasars have intrinsically weak Big Blue Bumps. There is no discontinuity in spectral properties between the BL Lac objects in our sample and the other quasars. BL Lac objects appear to be the red, low equivalent width tail of a continuous distribution. The synchrotron emission component only dominates the spectrum at longer wavelengths, so existing BL Lac surveys will be biased against high redshift objects. This will affect measurements of BL Lac evolution. The blue PHFS quasars have significantly higher equivalent width C IV, Hbeta and [0 111] emission than a matched sample of optically selected QSOs.