10 resultados para Planting date
em University of Queensland eSpace - Australia
Resumo:
A supersweet sweet corn hybrid, Pacific H5, was planted at weekly intervals (P-1 to P-5) in spring in South-Eastern Queensland. All plantings were harvested at the same time resulting in immature seed for the last planting (P-5). The seed was handled by three methods: manual harvest and processing (M-1), manual harvest and mechanical processing (M-2) and mechanical harvest and processing (M-3), and later graded into three sizes (small, medium and large). After eight months storage at 12-14degreesC, seed was maintained at 30degreesC with bimonthly monitoring of germination for fourteen months and seed damage at the end of this period. Seed quality was greatest for M-1 and was reduced by mechanical processing but not by mechanical harvesting. Large and medium seed had higher germination due to greater storage reserves but also more seed damage during mechanical processing. Immature seed from premature harvest (P-5) had poor quality especially when processed mechanically and reinforced the need for harvested seed to be physiologically mature.
Resumo:
In a 2-yr multiple-site field study conducted in western Nebraska during 1999 and 2000, optimum dryland corn (Zea mays L.) population varied from less than 1.7 to more than 5.6 plants m(-2), depending largely on available water resources. The objective of this study was to use a modeling approach to investigate corn population recommendations for a wide range of seasonal variation. A corn growth simulation model (APSIM-maize) was coupled to long-term sequences of historical climatic data from western Nebraska to provide probabilistic estimates of dryland yield for a range of corn populations. Simulated populations ranged from 2 to 5 plants m(-2). Simulations began with one of three levels of available soil water at planting, either 80, 160, or 240 mm in the surface 1.5 m of a loam soil. Gross margins were maximized at 3 plants m(-2) when starting available water was 160 or 240 mm, and the expected probability of a financial loss at this population was reduced from about 10% at 160 mm to 0% at 240 mm. When starting available water was 80 mm, average gross margins were less than $15 ha(-1), and risk of financial loss exceeded 40%. Median yields were greatest when starting available soil water was 240 mm. However, perhaps the greater benefit of additional soil water at planting was reduction in the risk of making a financial loss. Dryland corn growers in western Nebraska are advised to use a population of 3 plants m(-2) as a base recommendation.
Resumo:
Smallholder farmers in Africa practice traditional cropping techniques such as intercropping. Intercropping is thought to offer higher productivity and resource milisation than sole cropping. In this study, risk associated with maize-bean intercropping was evaluated by quantifying long-term yield in both intercropping and sole cropping in a semi-arid region of South Africa (Bloemfontein, Free State) with reference to rainfall variability. The crop simulation model was run with different cultural practices (planting date and plant density) for 52 summer crop growing seasons (1950/1951-2001/2002). Eighty-one scenarios, consisted of three levels of initial soil water, planting date, maize population, and bean population, were simulated. From the simulation outputs, the total land equivalent ratio (LER) was greater than one. The intercrop (equivalent to sole maize) had greater energy value (EV) than sole beans, and the intercrop (equivalent to sole beans) had greater monetary value (MV) than sole maize. From these results, it can be concluded that maize-bean intercropping is advantageous for this semi-arid region. Soil water at planting was the most important factor of all scenario factors, followed by planting date. Irrigation application at planting, November/December planting and high plant density of maize for EV and beans for MV can be one of the most effective cultural practices in the study region. With regard to rainfall variability, seasonal (October-April) rainfall positively affected EV and MV, but not LER. There was more intercrop production in La Nina years than in El Nino years. Thus, better cultural practices may be selected to maximize maize-bean intercrop yields for specific seasons in the semi-arid region based on the global seasonal outlook. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The linearity of daily linear harvest index (HI) increase can provide a simple means to predict grain growth and yield in field crops. However, the stability of the rate of increase across genotypes and environments is uncertain. Data from three field experiments were collated to investigate the phase of linear HI increase of sunflower (Helianthus annuus L,) across environments by changing genotypes, sowing time, N level, and solar irradiation level. Linear increase in HI was similar among different genotypes, N levels, and radiation treatments (mean 0.0125 d(-1)). but significant differences occurred between sowings, The linear increase in HI was not stable at very low temperatures (down to 9 degrees C) during grain filling, due to possible limitations to biomass accumulation and translocation (mean 0.0091 d(-1)). Using the linear increase in HI to predict grain yield requires predictions of the duration from anthesis to the onset of linear HI increase (lag phase) and the cessation of linear RT increase. These studies showed that the lag phase differed, and the linear HI increase ceased when 91% of the anthesis to physiological maturity period had been completed.
Resumo:
The value of a seasonal forecasting system based on phases of the Southern Oscillation was estimated for a representative dryland wheat grower in the vicinity of Goondiwindi. In particular the effects on this estimate of risk attitude and planting conditions were examined. A recursive stochastic programming approach was used to identify the grower's utility-maximising action set in the event of each of the climate patterns over the period 1894-1991 recurring In the imminent season. The approach was repeated with and without use of the forecasts. The choices examined were, at planting, nitrogen application rate and cultivar and, later in the season, choices of proceeding with or abandoning each wheat activity, The value of the forecasting system was estimated as the maximum amount the grower could afford to pay for its use without expected utility being lowered relative to its non use.
Resumo:
We examine the patterns of sex allocation in crimson rosellas Platycercus elegans, a socially monogamous Australian parrot. Overall, 41.8% of nestlings were male, a significant female bias. However underlying this population-level bias were non-random patterns of sex allocation within broods. Broods produced early in the season were female-biased, but the proportion of males in a brood increased as the breeding season progressed. Female rosellas may obtain greater fitness benefits from early-fledging daughters than sons because daughters can breed as 1-year-olds whereas sons do not breed until they are at least 2 years old. Laying date and laying sequence also interacted to influence the sex ratio of eggs. The sex of early-laid eggs strongly followed the brood level pattern, whereas the sex of middle- and late-laid eggs did not change significantly as the season progressed. Nevertheless, late-laid eggs were very unlikely to be male at the end of the season. We argue these differing seasonal patterns reflect the relative costs and benefits to producing early-hatched males and females at different times of the season. Female rosellas appear to maximise the probability that daughters are able to breed early but to minimise competitive asymmetries within the brood. In particular, late-hatched male chicks are disadvantaged if their oldest sibling is male, explaining the dearth of broods containing late-hatched males at the end of the breeding season.