14 resultados para Planets and Satellites: Atmospheres
em University of Queensland eSpace - Australia
Resumo:
For the first time it was possible to observe regular quasiperiodic scintillations (QPS) in VHF radio-satellite transmissions from orbiting satellites simultaneously at short (2.1 km) and long (121 km) meridional baselines in the vicinity of a typical mid-latitude station (Brisbane; 27.5degreesS and 152.9degreesE geog. and 35.6degrees invar.lat.), using three sites (St. Lucia-S, Taringa-T in Brisbane and Boreen Pt.-B, north of Brisbane). A few pronounced quasiperiodic (QP) events were recorded showing unambiguous regular structures at the sites which made it possible to deduce a time displacement of the regular fading minimum at S, T and B. The QP structure is highly dependent on the geometry of the ray-path from a satellite to the observer which is manifested as a change of a QP event from symmetrical to non-symmetrical for stations separated by 2.1 km, and to a radical change in the structure of the event over a distance of 121 km. It is suggested the short-duration intense QP events are due to a Fresnel diffraction (or a reflection mechanism) of radio-satellite signals by a single ionospheric irregularity in a form of an ellipsoid with a large ionization gradient along the major axis. The structure of a QP event depends on the angle of viewing of the irregular blob from a radio-satellite. In view of this it is suggested that the reported variety of the ionization formation, responsible for different types of QPS, is only apparent but not real. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Stalker (AIAA Paper 87-0403) has suggested that, by ejecting molecules directly upstream from the entire face of a satellite, it is possible to reduce the drag on a satellite in low-Earth orbit and hence maintain orbit with a total fuel mass (for forward ejection and conventional reaction rockets) less than the typical mass requirements of conventional rockets. An analytical analysis is presented here, as well as Monte Carlo simulations. These indicate that to reduce the overall drag on the satellite significantly, collisions between the freestream and ejected molecules must occur at least two satellite diameters upstream. This can be achieved if the molecules are ejected far upstream from the satellite’s surface through a sting that projects forward from the satellite. Using some estimates of what would be feasible sting arrangements, we find that the drag on the satellite can be reduced to such an extent that the satellite’s orbit can be maintained with a total fuel mass of less than 60% of that required for reaction rockets alone. Upstream ejection is effective in reducing the drag for freestream Knudsen numbers less than approximately 250, but not otherwise.
Resumo:
Accepting Furet’s claim that events acquire meaning and significance only in the context of narratives, this article argues that a particular type of international relations narrative has emerged with greater distinction after the traumatic experience of September 11: the gothic narrative. In a sense the political rhetoric of President Bush marks the latest example of America’s fine tradition in the gothic genre that began with Edgar Allan Poe and Nathaniel Hawthorne and extends through Henry James to Stephen King. His discourse of national security, it will be shown, assumes many of the predicates of gothic narratives. The gothic scenes evoked by Bush as much as Poe involve monsters and ghosts in tenebrous atmospheres that generate fear and anxiety, where terror is a pervasive tormentor of the senses. Poe’s narratives, for example, turn on encounters with dark, perverse, seemingly indomitable, forces often entombed in haunted houses. Similarly, Bush’s post-September 11 narratives play upon fears of terrorists and rogue states who are equally dark, perverse and indomitable forces. In both cases, ineffable and potently violent and cruel forces haunt and terrorise the civilised, human world.
Resumo:
The majority of the world's population now resides in urban environments and information on the internal composition and dynamics of these environments is essential to enable preservation of certain standards of living. Remotely sensed data, especially the global coverage of moderate spatial resolution satellites such as Landsat, Indian Resource Satellite and Systeme Pour I'Observation de la Terre (SPOT), offer a highly useful data source for mapping the composition of these cities and examining their changes over time. The utility and range of applications for remotely sensed data in urban environments could be improved with a more appropriate conceptual model relating urban environments to the sampling resolutions of imaging sensors and processing routines. Hence, the aim of this work was to take the Vegetation-Impervious surface-Soil (VIS) model of urban composition and match it with the most appropriate image processing methodology to deliver information on VIS composition for urban environments. Several approaches were evaluated for mapping the urban composition of Brisbane city (south-cast Queensland, Australia) using Landsat 5 Thematic Mapper data and 1:5000 aerial photographs. The methods evaluated were: image classification; interpretation of aerial photographs; and constrained linear mixture analysis. Over 900 reference sample points on four transects were extracted from the aerial photographs and used as a basis to check output of the classification and mixture analysis. Distinctive zonations of VIS related to urban composition were found in the per-pixel classification and aggregated air-photo interpretation; however, significant spectral confusion also resulted between classes. In contrast, the VIS fraction images produced from the mixture analysis enabled distinctive densities of commercial, industrial and residential zones within the city to be clearly defined, based on their relative amount of vegetation cover. The soil fraction image served as an index for areas being (re)developed. The logical match of a low (L)-resolution, spectral mixture analysis approach with the moderate spatial resolution image data, ensured the processing model matched the spectrally heterogeneous nature of the urban environments at the scale of Landsat Thematic Mapper data.
Resumo:
The short-lived Hf-182-W-182-isotope system is an ideal clock to trace core formation and accretion processes of planets. Planetary accretion and metal/silicate fractionation chronologies are calculated relative to the chondritic Hf-182-W-182-isotope evolution. Here, we report new high-precision W-isotope data for the carbonaceous chondrite Allende that are much less radiogenic than previously reported and are in good agreement with published internal Hf-W chronometry of enstatite chondrites. If the W-isotope composition of terrestrial rocks, representing the bulk silicate Earth, is homogeneous and 2.24 epsilon(182W) units more radiogenic than that of the bulk Earth, metal/silicate differentiation of the Earth occurred very early. The new W-isotope data constrain the mean time of terrestrial core formation to 34 million years after the start of solar system accretion. Early terrestrial core formation implies rapid terrestrial accretion, thus permitting formation of the Moon by giant impact while Hf-182 was still alive. This could explain why lunar W-isotopes are more radiogenic than the terrestrial value. Copyright (C) 2002 Elsevier Science Ltd.
Resumo:
This paper presents the design of Ku-band (12.25 12.75 GHz) dual-polarized reflectarrays for Optus BI satellites to obtain a contoured beam for Australia and New Zealand. The specified radiation pattern is synthesized using a phase-only synthesis method based on the concept of intersection approach. Having determined the phasing data, single- and double-layer reflectarrays ore designed using variable-size rectangular patches. The performances of the two reflectarrays are assessed by comparing their radiation patterns with the assumed pattern. (C) 2003 Wiley Periodicals, Inc. Microwave Opt Technol Lett 37: 321-325, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10. 1002/mop. 10907.
Resumo:
Doped ceria (CeO2,) compounds are fluorite type oxides, which show oxide ionic conductivity higher than yttria stabilized zirconia (YSZ), in oxidizing atmospheres. As a consequence of this, considerable interest has been shown in application of these materials for 'low (500-650 degreesC)' or 'intermediate (650-800 degreesC)' temperature operation, solid oxide fuel cells (SOFCs). In this study, the authors prepared two kinds of nanosize Sm-doped CeO2 particles with different morphologies: one type was round and the other was elongated. Processing these powders with different morphology produced dense materials with very different ionic conducting properties and different nanoscale microstructures. Since both particles are very fine and well dispersed, sintered bodies with high density (relative density >95% of theoretical) could be prepared using both types of powder particles. The electrical conductivity of sintered bodies prepared from these powders with different starting morphologies was very different. Materials prepared from particles having a round shape were much higher than those produced using powders with an elongated morphology. Measured activation energies of the corresponding sintered samples showed a similar trend; round particles (60 kJ/mol), elongated particles (74 kJ/mol). While X-ray diffraction (XRD) profiles of these sintered materials were identical, diffuse scatter was observed in the back.-round of selected area electron diffraction pattern recorded from both sintered bodies. This indicated an underlying structure that appeared to have been influenced by the processing technology. Detailed observation using high-resolution transmission electron microscopy (HR-TEM) revealed that the size of microdomain with ordering of cations in the sintered body made from round shape particles was much smaller than that of the sintered body made from elongated particles. Accordingly, it is concluded that the morphology of doped CeO2 powders strongly influenced the microdomain size and electrolytic properties in the doped CeO2 sintered body. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Single phase (Zn,Fe)(1-x) O zincite solid solution samples have been prepared by high temperature equilibration in air and in reducing atmospheres, followed by quenching to room temperature. The Fe2+/Fe3+ concentrations in the samples have been determined using wet chemical and XPS techniques. Iron is found to be present in zincite predominantly in the form of Fe3+ ions. The transition from an equiaxed grain morphology to plate-like zincite crystals is shown to be associated with increasing Fe3+ concentration, increasing elongation in < 001 > of the hexagonal crystals and increasing anisotropic strain along the c-axis. The plate-like crystals are shown to contain planar defects and zincite polytypes at high iron concentrations.
Resumo:
(U–Th)/He dating of goethite, when combined with quantification of diffusive 4He loss by the 4He/3He methodology, provides reliable corrected ages for minerals precipitated in weathering profiles. We have combined (U–Th)/He dating of supergene goethite with 40Ar/39Ar dating of supergene manganese oxides to study the weathering history and landscape evolution in the Hamersley Province, northwestern Australia. Incremental heating 40Ar/39Ar analysis of 187 grains of Mn oxides from 65 samples (44 hand specimens) collected from weathering profiles at seven field sites across the Hamersley Province yield precipitation ages ranging from 63.4 ± 0.9 to 1.5 ± 0.2 Ma. These results, combined with previous results of 40Ar/39Ar dating of Mn oxides (Vasconcelos, 1998 Vasconcelos, P.V., 1998. Unpub. report, pp. 1–278.Vasconcelos, 1998 and Cochrane, 2003), reveal a protracted and episodic history of weathering and landscape evolution, which was already ongoing in Late Cretaceous and spans the Palaeogene and Neogene. Seventy-three grains of goethite from 39 samples extracted from 21 hand specimens, collected from the same field sites where the Mn oxides originated, were dated by the (U–Th)/He method. Internally consistent (U–Th)/He ages, which range from 84.3 ± 12.2 to 3.3 ± 0.5 Ma, have been obtained for most samples when corrections are applied for 10% helium diffusive loss. The geochronological results obtained show remarkable similarity in the distribution of ages associated with supergene mineral precipitation. The widespread occurrence of iron oxides such as goethite in soils and weathering profiles and the successful application of (U–Th)/He dating of goethite offers great opportunities for extracting the wealth of palaeoclimatic and palaeoenvironmental information recorded by these profiles on the surface of terrestrial planets such as Earth and Mars.
Resumo:
NASA is working on complex future missions that require cooperation between multiple satellites or rovers. To implement these systems, developers are proposing and using intelligent and autonomous systems. These autonomous missions are new to NASA, and the software development community is just learning to develop such systems. With these new systems, new verification and validation techniques must be used. Current techniques have been developed based on large monolithic systems. These techniques have worked well and reliably, but do not translate to the new autonomous systems that are highly parallel and nondeterministic.