14 resultados para Pkc

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of protein kinase C (PKC) in glucose-stimulated insulin secretion (GSIS) is controversial. Using recombinant adenoviruses for overexpression of PKCalpha and PKCdelta, in both wild-type (WT) and kinase-dead (KD) forms, we here demonstrate that activation of these two PKCs is neither necessary nor sufficient for GSIS from batch-incubated, rat pancreatic islets. In contrast, responses to the pharmacologic activator 12-O-tetradecanoylphorbol-13-acetate (TPA) were reciprocally modulated by overexpression of the PKCalphaWT or PKCalphaKD but not the corresponding PKCdelta adenoviruses. The kinetics of the secretory response to glucose (monitored by perifusion) were not altered in either cultured islets overexpressing PKCalphaKD or freshly isolated islets stimulated in the presence of the conventional PKC (cPKC) inhibitor Go6976. However, the latter did inhibit the secretory response to TPA. Using phosphorylation state-specific antisera for consensus PKC phosphorylation sites, we also showed that (compared with TPA) glucose causes only a modest and transient functional activation of PKC (maximal at 2-5 min). However, glucose did promote a prolonged (15 min) phosphorylation of PKC substrates in the presence of the phosphatase inhibitor okadaic acid. Overall, the results demonstrate that glucose does stimulate PKCalphain pancreatic islets but that this makes little overall contribution to GSIS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One key role of the renal proximal tubule is the reabsorption of proteins from the glomerular filtrate by constitutive receptor-mediated endocytosis. In the opossum kidney (OK) renal proximal tubule cell line, inhibition of protein kinase C (PKC) reduces albumin uptake, although the isoforms involved and mechanisms by which this occurs have not been identified. We used pharmacological and molecular approaches to investigate the role of PKC-α in albumin endocytosis. We found that albumin uptake in OK cells was inhibited by the pan-PKC blocker bisindolylmaleimide-1 and the isoform-specific PKC blockers Go-6976 and 2',3,3',4,4'-hexahydroxy-1,1'-biphenyl-6,6'-dimethanol dimethyl ether, indicating a role for PKC-α. Overexpression of a kinase deficient PKC-α(K368R) but not wild-type PKC-α significantly reduced albumin endocytosis. Western blot analysis of fractionated cells showed an increased association of PKC-α-green fluorescent protein with the membrane fraction within 10-20 min of exposure to albumin. We used phalloidin to demonstrate that albumin induces the formation of clusters of actin at the apical surface of OK cells and that these clusters correspond to the location of albumin uptake. These clusters were not present in cells grown in the absence of albumin. In cells treated either with PKC inhibitors or overexpressing kinase-deficient PKC-α(K368R) this actin cluster formation was significantly reduced. This study identifies a role for PKC-α in constitutive albumin uptake in OK cells by mediating assembly of actin microfilaments at the apical membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: This study investigated signaling pathways that may contribute to the potent positive inotropic effect of human urotensin-II (hU-II) in human isolated right atrial trabeculae obtained from patients with coronary artery disease. Methods: Trabeculae were set up in tissue baths and stimulated to contract at 1 Hz. Tissues were incubated with 20 nM hU-II with or without phorbol 12-myristate 13-acetate (PMA, 10 muM) to desensitize PKC, the PKC inhibitor chelerythrine (10 muM), 10 muM 4alpha-phorbol that does not desensitize PKC, the myosin light chain kinase inhibitor wortmannin (50 nM, 10 muM), or the Rho kinase inhibitor Y-27632 (0.1 - 10 muM). Activated RhoA was determined by affinity immunoprecipitation, and phosphorylation of signaling proteins was determined by SDS-PAGE. Results: hU-II caused a potent positive inotropic response in atrial trabeculae, and this was concomitant with increased phosphorylation of regulatory myosin light chain (MLC-2, 1.8 +/- 0.4-fold, P < 0.05, n = 6) and PKCalpha/betaII (1.4 +/- 0.2-fold compared to non-stimulated controls, P < 0.05, n = 7). Pretreatment of tissues with PMA caused a marked reduction in the inotropic effect of hU-II, but did not affect hU-II-mediated phosphorylation of MLC-2. The inotropic response was inhibited by chelerythrine, but not 4alpha-phorbol or wortmannin. Although Y-27632 also reduced the positive inotropic response to hU-II, this was associated with a marked reduction in basal force of contraction. RhoA. GTP was immunoprecipitated in tissues pretreated with or without hU-II, with findings showing no detectable activation of RhoA in the agonist stimulated tissues. Conclusions: The findings indicated that hU-II increased force of contraction in human heart via a PKC-dependent mechanism and increased phosphorylation of MLC-2, although this was independent of PKC. The positive inotropic effect was independent of myosin light chain kinase and RhoA-Rho kinase signaling pathways. (C) 2004 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Internalization of some plasma membrane constituents, bacterial toxins, and viruses occurs via caveolae; however, the factors that regulate caveolar internalization are still unclear. Here, we demonstrate that a brief treatment of cultured cells with natural or synthetic glycosphingolipids (GSLs) or elevation of cholesterol (either by acute treatment with mbeta-cyclodextrin/cholesterol or by alteration of growth conditions) dramatically stimulates caveolar endocytosis with little or no effect on other endocytic mechanisms. These treatments also stimulated the movement of GFP-labeled vesicles in cells transfected with caveolin-1-GFP and reduced the number of surface-connected caveolae seen by electron microscopy. In contrast, overexpression of caveolin-1 decreased caveolar uptake, but treatment with GSLs reversed this effect and stimulated caveolar endocytosis. Stimulation of caveolar endocytosis did not occur using ceramide or phosphatidylcholine and was not due to GSL degradation because similar results were obtained using a nonhydrolyzable GSL analog. Stimulated caveolar endocytosis required src kinase and PKC-alpha activity as shown by i) use of pharmacological inhibitors, ii) expression of kinase inactive src or dominant negative PKCalpha, and iii) stimulation of src kinase activity upon addition of GSLs or cholesterol. These results suggest that caveolar endocytosis is regulated by a balance of caveolin-1, cholesterol, and GSLs at the plasma membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1 The calcineurin (CaN) enzyme-transcriptional pathway is critically involved in hypertrophy of heart muscle in some animal models. Currently there is no information concerning the regulation of CaN activation by endogenous agonists in human heart. 2 Human right ventricular trabeculae from explanted human ( 14 male/2 female) failing hearts were set up in a tissue bath and electrically paced at 1Hz and incubated with or without 100 nM endothelin-1 (ET-1), 10 mu M, angiotensin-II (Ang II) or 20 nM human urotensin-II (hUII) for 30 min. Tissues from four patients were incubated with 200 nM tacrolimus (FK506) for 30 min and then incubated in the presence or absence of ET-1 for a further 30 min. 3 ET-1 increased contractile force in all 13 patients (P < 0.001). Ang II and hUII increased contractile force in three out of eight and four out of 10 patients but overall nonsignificantly (P > 0.1). FK506 had no effect on contractile force (P = 0.12). 4 ET-1, Ang II and hUII increased calcineurin activity by 32, 71 and 15%, respectively, while FK506 reduced activity by 34%. ET-1 in the presence of FK506 did not restore calcineurin activity (P = 0.1). 5 There was no relationship between basal CaN activity and expression levels in the right ventricle. Increased levels of free phosphate were detected in ventricular homogenates that were incubated with PKC epsilon compared to samples incubated without PKCe. 6 Endogenous cardiostimulants which activate G alpha q-coupled receptors increase the activity of calcineurin in human heart following acute (30 min) exposure. PKC may contribute to this effect by increasing levels of phosphorylated calcineurin substrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The NR4A1-3 (Nur77, NURR1 and NOR-1) subfamily of nuclear hormone receptors (NRs) has been implicated in Parkinson's disease, schizophrenia, manic depression, atherogenesis, Alzheimer's disease, rheumatoid arthritis, cancer and apoptosis. This has driven investigations into the mechanism of action, and the identification of small molecule regulators, that may provide the platform for pharmaceutical and therapeutic exploitation. Recently, we found that the purine antimetabolite 6-Mercaptopurine (6-MP), which is widely used as an anti-neoplastic and anti-inflammatory drug, modulated the NR4A1-3 subfamily. Interestingly, the agonist-mediated activation did not involve modulation of primary coactivators' (e.g. p300 and SRC-2/GRIP-1) activity and/or recruitment. However, the role of the subsequently recruited coactivators, for example CARM-1 and TRAP220, in 6-MP-mediated activation of the NR4A1-3 subfamily remains obscure. In this study we demonstrate that 6-MP modulates the activity of the coactivator TRAP220 in a dose-dependent manner. Moreover, we demonstrate that TRAP220 potentiates NOR-1-mediated transactivation, and interacts with the NR4A1-3 subgroup in an AF-1-dependent manner in a cellular context. The region of TRAP220 that mediated 6-MP activation and NR4A interaction was delimited to amino acids 1-800, and operates independently of the critical PKC and PKA phosphorylation sites. Interestingly, TRAP220 expression does not increase the relative induction by 6-MP, however the absolute level of NOR-1-mediated trans-activation is increased. This study demonstrates that 6-MP modulates the activity of the NR4A subgroup, and the coactivator TRAP220.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the process of internalization of molecules from the extracellular milieu, a cell uses multiple endocytic pathways, consequently generating different endocytic vesicles. These primary endocytic vesicles are targeted to specific destinations inside the cell. Here, we show that GPI-anchored proteins are internalized by an Arf6-independent mechanism into GPI-anchored protein-enriched early endosomal compartments (GEECs). Internalized GPI-anchored proteins and the fluid phase are first visualized in GEECs that are acidic, primary endocytic structures, negative for early endosomal markers, Rab4, Rab5, and early endosome antigen (EEA)1. They subsequently acquire Rab5 and EEA1 before homotypic fusion with other GEECs, and heterotypic fusion with endosomes containing cargo from the clathrin-dependent endocytic pathway. Although, the formation of GEECs is unaffected by inhibition of Rab5 GTPase and phosphatidylinositol-3'-kinase (PI3K) activity, their fusion with sorting endosomes is dependent on both activities. Overexpression of Rab5 reverts PI3K inhibition of fusion, providing evidence that Rab5 effectors play important roles in heterotypic fusion between the dynamin-independent GEECs and clathrin- and dynamin-dependent sorting endosomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the targeting of caveolin to lipid bodies in adipocytes that express high levels of caveolins and contain well-developed lipid droplets. We observed that the lipid droplets isolated from adipocytes of caveolin-1 knock out mice contained dramatically reduced levels of cholesterol, indicating that caveolin is required for maintaining the cholesterol content of this organelle. Analysis of caveolin distribution by cell fractionation and fluorescent light microscopy in 3T3-L1 adipocytes indicated that addition of cholesterol rapidly stimulated translocation of caveolin to lipid droplets. The cholesterol-induced trafficking of caveolins to lipid droplets was shown to be dynamin- and protein kinase C (PKC)-dependent and modulated by src tyrosine kinase activation, suggesting a role for caveolar endocytosis in this novel trafficking pathway. Consistent with this, caveolae budding was stimulated by cholesterol addition. The present data identify lipid droplets as potential target organelles for caveolar endocytosis and demonstrate a role for caveolin-1 in the maintenance of free cholesterol levels in adipocyte lipid droplets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein kinase C (PKC) comprises a superfamily of isoenzymes, many of which are activated by cofactors such as diacylglycerol and phosphatidylserine. In order to be capable of activation, PKC must first undergo a series of phosphorylations. In turn, activated PKC phosphorylates a wide variety of intracellular target proteins and has multiple functions in signal transduced cellular regulation. A role for PKC activation had been noted in several renal diseases, but two that have had most investigation are diabetic nephropathy and kidney cancer. In diabetic nephropathy, an elevation in diacylglycerol and/or other cofactor stimulants leads to an increase in activity of certain PKC isoforms, changes that are linked to the development of dysfunctional vasculature. The ability of isoform-specific PKC inhibitors to antagonize diabetes-induced vascular disease is a new avenue for treatment of this disorder. In the development and progressive invasiveness of kidney cancer, increased activity of several specific isoforms of PKC has been noted. It is thought that this may promote the kidney cancer's inherent resistance to apoptosis, in natural regression or after treatments, or it may promote the invasiveness of renal cancers via cellular differentiation pathways. In general, however, a more complete understanding of the functions of individual PKC isoforms in the kidney, and development or recognition of specific inhibitors or promoters of their activation, will be necessary to apply this knowledge for treatment of cellular dysregulation in renal disease.