10 resultados para Phytohemagglutinins -- pharmacology

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although cytosolic glutathione S-transterase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes. GST1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GsTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals. e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence Suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestivc tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Half of the members of the nuclear receptors superfamily are so-called orphan receptors because the identity of their ligand, if any, is unknown. Because of their important biological roles, the study of orphan receptors has attracted much attention recently and has resulted in rapid advances that have helped in the discovery of novel signaling pathways. In this review we present the main features of orphan receptors, discuss the structure of their ligand-binding domains and their biological functions. The paradoxical existence of a pharmacology of orphan receptors, a rapidly growing and innovative field, is highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxycodone is a potent opioid agonist that has been in clinical use for many decades. However, it has only recently been appreciated that oxycodone has a distinctly different pharmacology from that of morphine. Importantly, when administered directly into the lateral ventricle of the rat brain, oxycodone produces dose-dependent, naloxone-reversible pain relief in an acute pain model, indicating that oxycodone itself has intrinsic anti-nociceptive effects (Leow & Smith, 1994). However, oxycodone's intrinsic pain-relieving effects are not attenuated by naloxonazine (-selective opioid antagonist) in a dose that completely blocks the anti-nociceptive effects of an equi-analgesic dose of morphine. Furthermore, the anti-nociceptive effects of intracerebroventricular (icv) oxycodone are completely attenuated by nor-binaltorphimine (-selective opioid antagonist) in a dose that has no significant effect on the levels of anti-nociception evoked by an equi-effective dose of morphine (Ross & Smith, 1997).