10 resultados para Physiologically Based
em University of Queensland eSpace - Australia
Resumo:
Current Physiologically based pharmacokinetic (PBPK) models are inductive. We present an additional, different approach that is based on the synthetic rather than the inductive approach to modeling and simulation. It relies on object-oriented programming A model of the referent system in its experimental context is synthesized by assembling objects that represent components such as molecules, cells, aspects of tissue architecture, catheters, etc. The single pass perfused rat liver has been well described in evaluating hepatic drug pharmacokinetics (PK) and is the system on which we focus. In silico experiments begin with administration of objects representing actual compounds. Data are collected in a manner analogous to that in the referent PK experiments. The synthetic modeling method allows for recognition and representation of discrete event and discrete time processes, as well as heterogeneity in organization, function, and spatial effects. An application is developed for sucrose and antipyrine, administered separately and together PBPK modeling has made extensive progress in characterizing abstracted PK properties but this has also been its limitation. Now, other important questions and possible extensions emerge. How are these PK properties and the observed behaviors generated? The inherent heuristic limitations of traditional models have hindered getting meaningful, detailed answers to such questions. Synthetic models of the type described here are specifically intended to help answer such questions. Analogous to wet-lab experimental models, they retain their applicability even when broken apart into sub-components. Having and applying this new class of models along with traditional PK modeling methods is expected to increase the productivity of pharmaceutical research at all levels that make use of modeling and simulation.
Resumo:
This study investigated the relative contribution of ion-trapping, microsomal binding, and distribution of unbound drug as determinants in the hepatic retention of basic drugs in the isolated perfused rat liver. The ionophore monensin was used to abolish the vesicular proton gradient and thus allow an estimation of ion-trapping by acidic hepatic vesicles of cationic drugs. In vitro microsomal studies were used to independently estimate microsomal binding and metabolism. Hepatic vesicular ion-trapping, intrinsic elimination clearance, permeability-surface area product, and intracellular binding were derived using a physiologically based pharmacokinetic model. Modeling showed that the ion-trapping was significantly lower after monensin treatment for atenolol and propranolol, but not for antipyrine. However, no changes induced by monensin treatment were observed in intrinsic clearance, permeability, or binding for the three model drugs. Monensin did not affect binding or metabolic activity in vitro for the drugs. The observed ion-trapping was similar to theoretical values estimated using the pHs and fractional volumes of the acidic vesicles and the pK(a) values of drugs. Lipophilicity and pK(a) determined hepatic drug retention: a drug with low pK(a) and low lipophilicity (e.g., antipyrine) distributes as unbound drug, a drug with high pK(a) and low lipophilicity (e.g., atenolol) by ion-trapping, and a drug with a high pK(a) and high lipophilicity (e.g., propranolol) is retained by ion-trapping and intracellular binding. In conclusion, monensin inhibits the ion-trapping of high pK(a) basic drugs, leading to a reduction in hepatic retention but with no effect on hepatic drug extraction.
Resumo:
The aim of this study was to define the determinants of the linear hepatic disposition kinetics of propranolol optical isomers using a perfused rat liver. Monensin was used to abolish the lysosomal proton gradient to allow an estimation of propranolol ion trapping by hepatic acidic vesicles. In vitro studies were used for independent estimates of microsomal binding and intrinsic clearance. Hepatic extraction and mean transit time were determined from outflow-concentration profiles using a nonparametric method. Kinetic parameters were derived from a physiologically based pharmacokinetic model. Modeling showed an approximate 34-fold decrease in ion trapping following monensin treatment. The observed model-derived ion trapping was similar to estimated theoretical values. No differences in ion-trapping values was found between R(+)- and S(-)- propranolol. Hepatic propranolol extraction was sensitive to changes in liver perfusate flow, permeability-surface area product, and intrinsic clearance. Ion trapping, microsomal and nonspecific binding, and distribution of unbound propranolol accounted for 47.4, 47.1, and 5.5% of the sequestration of propranolol in the liver, respectively. It is concluded that the physiologically more active S(-)- propranolol differs from the R(+)- isomer in higher permeability-surface area product, intrinsic clearance, and intracellular binding site values.
Resumo:
1 The disposition kinetics of [H-3] taurocholate ([H-3]TC) in perfused normal and cholestatic rat livers were studied using the multiple indicator dilution technique and several physiologically based pharmacokinetic models. 2 The serum biochemistry levels, the outflow profiles and biliary recovery of [H-3] TC were measured in three experimental groups: (i) control; (ii) 17α-ethynylestradiol (EE)-treated (low dose); and (iii) EE-treated (high dose) rats. EE treatment caused cholestasis in a dose-dependent manner. 3 A hepatobiliary TC transport model, which recognizes capillary mixing, active cellular uptake, and active efflux into bile and plasma described the disposition of [H-3]TC in the normal and cholestatic livers better than the other pharmacokinetic models. 4 An estimated five- and 18-fold decrease in biliary elimination rate constant, 1.7- and 2.7-fold increase in hepatocyte to plasma efflux rate constant, and 1.8- and 2.8-fold decrease in [H-3]TC biliary recovery ratio was found in moderate and severe cholestasis, respectively, relative to normal. 5 There were good correlations between the predicted and observed pharmacokinetic parameters of [H-3]TC based on liver pathophysiology (e.g. serum bilirubin level and biliary excretion of [H-3]TC). In conclusion, these results show that altered hepatic TC pharmacokinetics in cholestatic rat livers can be correlated with the relevant changes in liver pathophysiology in cholestasis.
Resumo:
Nonalcoholic fatty liver disease is the most common of all liver diseases. The hepatic disposition [H-3]palmitate and its low-molecular-weight metabolites in perfused normal and steatotic rat liver were studied using the multiple indicator dilution technique and a physiologically based slow diffusion/bound pharmacokinetic model. The steatotic rat model was established by administration of 17alpha-ethynylestradiol to female Wistar rats. Serum biochemistry markers and histology of treated and normal animals were assessed and indicated the presence of steatosis in the treatment group. The steatotic group showed a significantly higher alanine aminotransferase-to-aspartate aminotransferase ratio, lower levels of liver fatty acid binding protein and cytochrome P-450, as well as microvesicular steatosis with an enlargement of sinusoidal space. Hepatic extraction for unchanged [H-3]palmitate and production of low-molecular-weight metabolites were found to be significantly decreased in steatotic animals. Pharmacokinetic analysis suggested that the reduced extraction and sequestration for palmitate and its metabolites was mainly attributed to a reduction in liver fatty acid binding protein in steatosis.
Resumo:
Systemic inflammation is known to affect drug disposition in the liver. This study sought to relate and quantitate changes in hepatic pharmacokinetics of propranolol with changes in hepatic architecture and physiology in adjuvant-treated rats. Transmission electron microscopy was used to assess morphological changes in mitochondria and lysosomes of adjuvant-treated rat livers. The disposition of propranolol was assessed in the perfused rat liver using the multiple indicator dilution technique. Hepatic extraction and mean transit time were determined from outflow-concentration profiles using a nonparametric method. Kinetic parameters were derived from a two-phase physiologically based organ pharmacokinetic model. Possible relationships were then explored between the changes in hepatic drug disposition and cytochrome P-450 activity and iron concentration. Adjuvant treatment induced the appearance of mitochondrial inclusions/tubularization and irregularly shaped lysosomes in rat livers. Livers from adjuvant-treated rats had (relative to normal) significantly higher alpha(1)-acid glycoprotein (orosomucoid) and iron tissue concentrations but lower cytochrome P-450 content. The hepatic extraction, metabolism, and ion trapping of propranolol were significantly impaired in adjuvant-treated rats and could be correlated with altered iron store and cytochrome P-450 activity. It is concluded that adjuvant-induced systemic inflammation alters hepatocellular morphology and biochemistry and consequently influences hepatic disposition of propranolol.