11 resultados para Photothermal spectroscopy of liquids
em University of Queensland eSpace - Australia
Resumo:
A comparison has been made between the spectroscopic properties of the laser dye rhodamine 6G (R6G) in mesostructured titanium dioxide (TiO2) and in ethanol. Steady-state excitation and emission techniques have been used to probe the dye-matrix interactions. We show that the TiO2-nanocomposite studied is a good host for R6G, as it allows high dye concentrations, while keeping dye molecules isolated, and preventing aggregation. Our findings have important implications in the context of solid state dye-lasers and microphotonic device applications. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Visible pump-probe spectroscopy has been used to identify and characterize short-lived metal-to-metal charge transfer (MMCT) excited states in a group of cyano-bridged mixed-valence complexes of the formula [(LCoNCMII)-N-III(CN)(5)](-), where L is a pentadentate macrocyclic pentaamine (L-14) or triamine-dithiaether (L-14S) and M is Fe or Ru. Nanosecond pump-probe spectroscopy on frozen solutions of [(LCoNCFeII)-Co-14-N-III(CN)(5)](-) and [(LCoNCFeII)-Co-14S-N-III(CN)(5)](-) at 11 K enabled the construction of difference transient absorption spectra that featured a rise in absorbance in the region of 350-400 nm consistent with the generation of the ferricyanide chromophore of the photoexcited complex. The MMCT excited state of the Ru analogue [(LCoNCRuII)-Co-14-N-III(CN)(5)](-) was too short-lived to allow its detection. Femtosecond pump-probe spectroscopy on aqueous solutions of [(LCoNCFeII)-Co-14-N-III(CN)(5)](-) and [(LCoNCFeII)-Co-14S-N-III(CN)(5)](-) at room temperature enabled the lifetimes of their Co-II-Fe-III MMCT excited states to be determined as 0.8 and 1.3 ps, respectively.
Resumo:
PbS nanocrystals are synthesized using colloidal techniques and have their surfaces capped with oleic acid. The absorption band edge of the PbS nanocrystals is tuned between 900 and 580 nm. The PbS nanocrystals exhibit tuneable photoluminescence with large non-resonant Stokes shifts of up to 500 mcV. The magnitude of the Stokes shift is found to be dependent upon the size of PbS nanocrystals. Time-resolved photoluminescence spectroscopy of the PbS nanocrystals reveals that the photouminescence has an extraordinarily long lifetime of 1 mus. This long fluorescence lifetime is attributed to the effect of dielectric screening similar to that observed in other IV-VI semiconductor nanocrystals.
Resumo:
Photopyroelectric spectroscopy (PPE) was used to study the thermal and optical properties of melanins. The photopyroelectric intensity signal and its phase were independently measured as a function of wavelength and chopping frequency for a given wavelength in the saturation part of the PPE spectrum. Equations for both the intensity and the phase of the PPE signal were used to fit the experimental results. From these fits we obtained for the first time, with great accuracy, the thermal diffusivity coefficient, the thermal conductivity, and the specific heat of the samples, as well as a value for the condensed phase optical gap, which we found to be 1.70 eV. (c) 2005 American Institute of Physics.
Resumo:
Photopyroelectric (PPE) spectroscopy, in the 350-1,075 nm wavelength range, was used to study the optical properties of electropolymerized melanin films on indium tin oxide (ITO) coated glass. The PPE intensity signal as a function of the wavelength lambda, V (n)(lambda) and its phase F (n)(lambda) were independently measured. Using the PPE signal intensity and the thermal and optical properties of the pyroelectric detector, we were able to calculate the optical absorption coefficient beta of melanin in the solid-state. We believe this to be the first such measurement of its kind on this material. Additionally, we found an optical gap in these melanin films at 1.70 eV.
Resumo:
Steady-state and time-resolved photoluminescence spectroscopy are used to examine the photoluminescent properties of nanocrystal-polymer composites consisting of colloidal PbS nanocrystals blended with poly(2-methoxy-5(2-ethylhexyloxy)-p-phenylene vinylene). Quenching of the emission from the conjugated polymer due to the PbS nanocrystals is observed along with band edge emission from the ligand capped PbS nanocrystals. A decrease in the photoluminescence lifetime of MEH-PPV is also observed in the thin film nanocrystal-polymer composite materials. Photoluminescence excitation spectroscopy of the PbS nanocrystal emission from the composite shows features attributed to MEH-PPV providing evidence of a Forster transfer process.
Resumo:
We present a technique to measure the viscosity of microscopic volumes of liquid using rotating optical tweezers. The technique can be used when only microlitre (or less) sample volumes are available, for example biological or medical samples, or to make local measurements in complicated micro-structures such as cells. The rotation of the optical tweezers is achieved using the polarisation of the trapping light to rotate a trapped birefringent spherical crystal, called vaterite. Transfer of angular momentum from a circularly polarised beam to the particle causes the rotation. The transmitted light can then be analysed to determine the applied torque to the particle and its rotation rate. The applied torque is determined from the change in the circular polarisation of the beam caused by the vaterite and the rotation rate is used to find the viscous drag on the rotating spherical particle. The viscosity of the surrounding liquid can then be determined. Using this technique we measured the viscosity of liquids at room temperature, which agree well with tabulated values. We also study the local heating effects due to absorption of the trapping laser beam. We report heating of 50-70 K/W in the region of liquid surrounding the particle.