5 resultados para Photograph collections -- TFC
em University of Queensland eSpace - Australia
Resumo:
Aber Wrac’h, Pays du Léon, Bretagne. Aber Wrac’h, Bretagne, France, on 10 March 2004 at 13:30 (low tide) looking North (downstream) towards the Aber mouth and open sea between Lannilis and Plougerneau, Pays des Abers, Pays du Le´on. The word "Aber" is Britton (Breton) for a "fjord"-like estuary. Located on the Channel, the region "Pays des Abers" includes several deep incisions in the coastlines. The best known ‘‘Abers’’ are the Aber Wrac’h and Aber Benoit in the Pays du Léon, Finistere Nord.
Resumo:
A key controversy in negotiating the International Treaty on Plant Genetic Resources for Food and Agriculture, and the likely long-term effectiveness of the agreement, is the way in which the intellectual property provisions are interpreted and applied to the key genetic resources forming the Consultative Group on International Agricultural Research (CGIAR) system of International Agricultural Research Centres' (IARC) collections. This paper reviews the intellectual property provisions in the treaty and examines the likely consequences from patenting under the Patents Act 1990 over materials derived from these collections. The consequence is argued to be significant and, over time, these practices are likely to deplete the usefulness of these collections and undermine the relevance of the treaty. The paper concludes that Australia's interests might best be served by arguing that access to these collections, and the other materials under the treaty, be subject to a non-exclusive, royalty free licence for any use of the derived materials to develop useful new plant varieties.
Resumo:
The material in genebanks includes valuable traditional varieties and landraces, non-domesticated species, advanced and obsolete cultivars, breeding lines and genetic stock. It is the wide variety of potentially useful genetic diversity that makes collections valuable. While most of the yield increases to date have resulted from manipulation of a few major traits (such as height, photoperiodism, and vernalization), meeting future demand for increased yields will require exploitation of novel genetic resources. Many traits have been reported to have potential to enhance yield, and high expression of these can be found in germplasm collections. To boost yield in irrigated situations, spike fertility must be improved simultaneously with photosynthetic capacity. CIMMYT's Wheat Genetic Resources program has identified a source of multi-ovary florets, with up to 6 kernels per floret. Lines from landrace collections have been identified that have very high chlorophyll concentration, which may increase leaf photosynthetic rate. High chlorophyll concentration and high stomatal conductance are associated with heat tolerance. Recent studies, through augmented use of seed multiplication nurseries, identified high expression of these traits in bank accessions, and both traits were heritable. Searches are underway for drought tolerance traits related to remobilization of stem fructans, awn photosynthesis, osmotic adjustment, and pubescence. Genetic diversity from wild relatives through the production of synthetic wheats has produced novel genetic diversity.