3 resultados para Phosphate minerals.

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability to make rapid measurements on small samples using laser fluorination enhances the potential of oxygen isotopes in the investigation of early inorganic materials and technologies. delta O-18 and Sr-87/Sr-86 values are presented for glass from two primary production sites, four secondary production sites and a consumer site in the Near East, dating from Late Antiquity to the medieval period. delta O-18 is in general slightly less effective than Sr-87/Sr-86 in discriminating between sources, as the spread of measured values from a single source is somewhat broader relative to the available range. However, while Sr-87/Sr-86 is derived predominantly from either the lime-bearing fraction of the glass-making sand or the plant ash used as a source of alkali, delta O-18 derives mainly from the silica. Thus the two measurements can provide complementary information. A comparison of delta O-18 for late Roman - Islamic glasses made on the coast of Syria-Palestine with those of previously analysed glasses from Roman Europe suggests that the European glasses are relatively enriched in O-18. This appears to contradict the view that most Roman glass was made using Levantine sand and possible interpretations are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soluble linear (non-cross-linked) poly(monoacryloxyethyl phosphate) (PMAEP) and poly(2-(methacryloyloxy)ethyl phosphate) (PMOEP) were successfully synthesized through reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization and by keeping the molecular weight below 20 K. Above this molecular weight, insoluble (cross-linked) polymers were observed, postulated to be due to residual diene (cross-linkable) monomers formed during purification of the monomers, MOEP and MAEP. Block copolymers consisting of PMAEP or PMOEP and poly(2-(acetoacetoxy) ethyl methacrylate) (PAAEMA) were successfully prepared and were immobilized on aminated slides. Simulated body fluid studies revealed that calcium phosphate (CaP) minerals formed on both the soluble polymers and the cross-linked gels were very similar. Both the PMAEP polymers and the PMOEP gel showed a CaP layer most probably brushite or monetite based on the Ca/P ratios. A secondary CaP mineral growth with a typical hydroxyapatite (HAP) globular morphology was found on the PMOEP gel. The soluble PMOEP film formed carbonated HAP according to Fourier transform infrared (FTIR) spectroscopy. Block copolymers attached to aminated slides showed only patchy mineralization, possibly due to the ionic interaction of negatively charged phosphate groups and protonated amines.