11 resultados para Phonological processing abilities

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current study examined the contribution of phonological processing abilities and ADHD-like behaviours to first-grade word reading ability. 136 children were tested at the beginning and end of first grade. At both times, teachers rated children on hyperactive, inattentive, and oppositional behaviour. Children were given tests of letter knowledge at T1 and tests of word reading, phonological sensitivity, phonological memory, rapid automatised naming, and vocabulary at T1 and T2. Regression analyses revealed that, of the behavioural measures, inattention made the strongest contribution to T2 reading, even after controlling for the effects of T1 reading, hyperactivity, and oppositional behaviour. Hyperactivity did not explain variance in T2 reading once the effect of inattention was controlled. Inattention predicted 4.7% independent variance in T2 word reading ability, even after the effects of T1 reading, vocabulary, and phonological processing were controlled. Although phonological processing predicted 9.3% independent variance in T2 word reading, even after the effects of reading, vocabulary, and inattention were controlled, the effects of phonological processing may have been partly mediated by inattention. This research indicates that inattention contributes to the prediction of early reading development in unselected populations, and that this influence is independent of other key cognitive predictors of reading ability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the importance of the connection between being able to speak and the emergence of phonological awareness abilities, the performance of children with cerebral palsy (five speakers and six non-speakers) was assessed at syllable, onset-rime, and phoneme levels. The children were matched with control groups of children for non-verbal intelligence. No group differences were found for the identification of syllables, reading non-words, or judging spoken rhyme. The children with cerebral palsy who could speak, however, performed better than the children with cerebral palsy who could not speak and the control group of children without disabilities, judging written words for rhyme. The children with cerebral palsy who could not speak performed poorly in comparison to those who could speak ( but not the control group of children) when segmenting syllables and on the phoneme manipulation task. The findings suggest that non-speaking children with cerebral palsy have phonological awareness performance that varies according to the mental processing demands of the task. The ability to speak facilitates performance when phonological awareness tasks ( written rhyme judgment, syllable segmentation, and phoneme manipulation) require the use of an articulatory loop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A correlational study was designed to examine the general processing speed and orthographic processing speed accounts of the association between continuous naming speed and word reading skill in children from fourth to sixth grade. Children were given two tests of each of the following constructs: word reading skill, alphanumeric symbol naming speed, nonsymbol naming speed, alphanumeric processing speed, and nonsymbol processing speed. Results were not completely consistent with either the general processing speed or the orthographic processing speed accounts. Although an alphanumeric symbol processing efficiency component is clearly involved, it is argued that the particularly strong association between naming speed and word reading also reflects the efficiency of phonological processing in children of this age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-phase longitudinal study examined the origins of grammatical sensitivity and its usefulness as a predictor of early word-level reading. At about 4 years of age, children were given a range of language and cognitive tests. One year later, the children were given a further series of language and cognitive tests, this time including grammatical sensitivity, phonological sensitivity, and nonword repetition. Another year later, word-level reading achievement was assessed. Overall, grammatical sensitivity and phonological sensitivity were more firmly grounded in earlier language ability than in cognitive ability. Phonological sensitivity and nonword repetition showed reliable predictive associations with subsequent word reading skills. Grammatical sensitivity did not. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While the occurrence and management of brainstem tumours in children would not traditionally indicate potential direct structural impact on classical language centres, recent theories have implicated some involvement of the brainstem in a functional language and cognitive neural loop between the cerebellum and the cerebral hemispheres. Thus, the present paper explored the impact of treatment for brainstem tumour on the general and high-level language abilities of six children treated for brainstem tumour, in addition to phonological awareness skills. Group analysis revealed that children treated for brainstem tumour demonstrated intact language and phonological awareness abilities in comparison to an age- and gender-matched control group. Individual analysis revealed only one of six children treated for brainstem tumour revealed evidence of language disturbances, with an additional child demonstrating an isolated mildly reduced score on one phonological awareness task. Language deficits identified in a child treated with a combination of both radiotherapy and chemotherapy were noted in the high-level language area of lexical generation. Findings highlighted that no overt language disturbances were evident in children treated for brainstem tumour. However, further analysis into higher-level language skills in the present study indicated that both general and high-level language abilities require long-term monitoring in this population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sources of covariation among cognitive measures of Inspection Time, Choice Reaction Time, Delayed Response Speed and Accuracy, and IQ were examined in a classical twin design that included 245 monozygotic (MZ) and 298 dizygotic (DZ) twin pairs. Results indicated that a factor model comprising additive genetic and unique environmental effects was the most parsimonious. In this model, a general genetic cognitive factor emerged with factor loadings ranging from 0.28 to 0.64. Three other genetic factors explained the remaining genetic covariation between various speed and Delayed Response measures with IQ. However, a large proportion of the genetic variation in verbal (54%) and performance (25%) IQ was unrelated to these lower order cognitive measures. The independent genetic IQ variation may reflect information processes not captured by the elementary cognitive tasks, Inspection Time and Choice Reaction Time, nor our working memory task, Delayed Response. Unique environmental effects were mostly nonoverlapping, and partly represented test measurement error.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the role of global processing speed in mediating age increases in auditory memory span in 5- to 13-year-olds. Children were tested on measures of memory span, processing speed, single-word speech rate, phonological sensitivity, and vocabulary. Structural equation modeling supported a model in which age-associated increases in processing speed predicted the availability of long-term memory phonological representations for redintegration processes. The availability of long-term phonological representations, in turn, explained variance in memory span. Maximum speech rate did not predict independent variance in memory span. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological underpinnings of human intelligence remain enigmatic. There remains the greatest confusion and controversy regarding mechanisms that enable humans to conceptualize, plan, and prioritize, and why they are set apart from other animals in their cognitive abilities. Here we demonstrate that the basic neuronal building block of the cerebral cortex, the pyramidal cell, is characterized by marked differences in structure among primate species. Moreover, comparison of the complexity of neuron structure with the size of the cortical area/region in which the cells are located revealed that trends in the granular prefrontal cortex (gPFC) were dramatically different to those in visual cortex. More specifically, pyramidal cells in the gPFC of humans had a disproportionately high number of spines. As neuron structure determines both its biophysical properties and connectivity, differences in the complexity in dendritic structure observed here endow neurons with different computational abilities. Furthermore, cortical circuits composed of neurons with distinguishable morphologies will likely be characterized by different functional capabilities. We propose that 1. circuitry in V1, V2, and gPFC within any given species differs in its functional capabilities and 2. there are dramatic differences in the functional capabilities of gPFC circuitry in different species, which are central to the different cognitive styles of primates. In particular, the highly branched, spinous neurons in the human gPFC may be a key component of human intelligence. (C) 2005 Wiley-Liss, Inc.